# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a259669 Showing 1-1 of 1 %I A259669 #14 Jul 05 2015 03:10:59 %S A259669 0,1,6,11,36,61,86,211,336,461,586,1211,1836,2461,3086,3711,6836,9961, %T A259669 13086,16211,19336,22461,38086,53711,69336,84961,100586,116211,131836, %U A259669 209961,288086,366211,444336,522461,600586,678711,756836,1147461,1538086,1928711 %N A259669 a(0)=0, a(1)=1, a(n) = min{5 a(k) + (5^(n-k)-1)/4, k=0..(n-1)} for n>=2. %C A259669 A generalization of Frame-Stewart recurrence is a(0)=0, a(1)=1, a(n)=min{q*a(k) + (q^(n-k)-1)/(q-1), k=0..(n-1)} where n>=2 and q>1. The sequence of first differences is q^A003056(n). For q=2 we have the sequence A007664. The current sequence is generated for q=5. %H A259669 Gheorghe Coserea, Table of n, a(n) for n = 0..4096 %H A259669 Jonathan Chappelon and Akihiro Matsuura, On generalized Frame-Stewart numbers, arXiv:1009.0146 [math.NT], 2010. %H A259669 P. Stockmeyer, Variations on the Four-Post Tower of Hanoi Puzzle %F A259669 a(n) = min {5*a(k) + (5^(n-k)-1)/4 ; k < n}. %F A259669 a(n) = sum(5^A003056(i), i=0..n-1). %t A259669 a[n_] := a[n] = Min[ Table[ 5*a[k] + (5^(n-k) - 1)/4, {k, 0, n-1}]]; a[0] = 0; Table[a[n], {n, 0, 60}] %Y A259669 Cf. A003056, A007664. %K A259669 nonn %O A259669 0,3 %A A259669 _Gheorghe Coserea_, Jul 02 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE