OFFSET
0,7
COMMENTS
LINKS
Antti Karttunen, The first 121 antidiagonals of the table, flattened
EXAMPLE
The top left corner of this square array begins as:
0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, ...
1, 0, 2, 1, 3, 2, 2, 1, 3, 2, 4, ...
1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 2, ...
2, 1, 1, 0, 2, 1, 3, 2, 2, 1, 3, ...
2, 3, 1, 2, 0, 1, 3, 4, 2, 3, 1, ...
3, 2, 2, 1, 1, 0, 4, 3, 3, 2, 2, ...
1, 2, 2, 3, 3, 4, 0, 1, 1, 2, 2, ...
2, 1, 3, 2, 4, 3, 1, 0, 2, 1, 3, ...
2, 3, 1, 2, 2, 3, 1, 2, 0, 1, 1, ...
3, 2, 2, 1, 3, 2, 2, 1, 1, 0, 2, ...
3, 4, 2, 3, 1, 2, 2, 3, 1, 2, 0, ...
...
For example, A(1,2) = A(2,1) = 2 as 1 has factorial base representation '...0001' and 2 has factorial base representation '...0010', and adding the absolute values of the digit differences, we get 1+1 = 2.
On the other hand, A(3,5) = A(5,3) = 1, as 3 has factorial base representation '...0011' and 5 has factorial base representation '...0021', and they differ only by their second rightmost digit, the absolute value of difference being 1.
PROG
CROSSREFS
KEYWORD
AUTHOR
Antti Karttunen, Nov 12 2013
STATUS
approved