[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A239729
Number of partitions p of n such that if h = min(p), then h is an (h,2)-separator of p; see Comments.
5
1, 1, 1, 2, 2, 2, 4, 4, 5, 7, 8, 10, 14, 16, 19, 25, 31, 36, 47, 55, 67, 83, 99, 119, 146, 173, 208, 250, 298, 352, 424, 500, 593, 703, 829, 974, 1154, 1350, 1585, 1859, 2175, 2537, 2968, 3452, 4019, 4672, 5425, 6283, 7290, 8421, 9735, 11240, 12962, 14921
OFFSET
1,4
COMMENTS
Suppose that p is a partition of n into 2 or more parts and that h is a part of p. Then p is (h,0)-separable if there is an ordering x, h, x, h, ..., h, x of the parts of p, where each x represents any part of p except h. Here, the number of h's on the ends of the ordering is 0. Similarly, p is (h,1)-separable if there is an ordering x, h, x, h, ..., x, h, where the number of h's on the ends is 1; next, p is (h,2)-separable if there is an ordering h, x, h, ..., x, h. Finally, p is h-separable if it is (h,i)-separable for i = 0, 1, or 2.
EXAMPLE
a(9) counts these 5 partitions: 612, 513, 414, 423, 31212.
MATHEMATICA
z = 75; Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Min[p]] == Length[p] + 1], {n, 1, z}] (* A239729 *)
Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, 2 Min[p]] == Length[p] + 1], {n, 1, z}] (* A239481 *)
Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Max[p]] == Length[p] + 1], {n, 1, z}] (* A239456 *)
Table[Count[Rest[IntegerPartitions[n]], p_ /; 2 Count[p, Length[p]] == Length[p] + 1], {n, 1, z}] (* A239499 *)
Table[Count[IntegerPartitions[n], p_ /; 2 Count[p, Max[p] - Min[p]] == Length[p] + 1], {n, 1, z}] (*A239689 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 25 2014
STATUS
approved