OFFSET
1,1
COMMENTS
a(n) is prime(k(n)) for which A238444(k(n)) = 2.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) == 1 (mod 4).
Proof. Using Wilson's theorem, for every p>3, p==3(mod 4) we have, at least, 3 solution in [1,p-2] of x! + (p-1)!/x!==0 (mod p): x = 1, x = (p-1)/2, x = p-2.
MATHEMATICA
A238444[n_] := a[n] = Module[{p, r}, p = Prime[n]; r = Range[p-2]; Count[r!+(p-1)!/r!, k_ /; Divisible[k, p]]]; A238460 = Prime /@ (Position[Table[A238444[n], {n, 1, 300}], 2] // Flatten) (* Jean-François Alcover, Feb 27 2014 *)
PROG
(PARI) is(p)=if(!isprime(p), return(0)); my(X=Mod(1, p), P=Mod((p-1)!, p)); for(x=2, p-3, X*=x; P/=x; if(X+P==0, return(0))); p>3 \\ Charles R Greathouse IV, Feb 28 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Feb 27 2014
EXTENSIONS
More terms from Peter J. C. Moses, Feb 27 2014
STATUS
approved