[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A213261
a(n) = p(7*n + 5), where p(k) = number of partitions of k = A000041(k).
9
7, 77, 490, 2436, 10143, 37338, 124754, 386155, 1121505, 3087735, 8118264, 20506255, 49995925, 118114304, 271248950, 607163746, 1327710076, 2841940500, 5964539504, 12292341831, 24908858009, 49686288421, 97662728555, 189334822579, 362326859895, 684957390936, 1280011042268, 2366022741845, 4328363658647, 7840656226137
OFFSET
0,1
COMMENTS
It is known that a(n) is divisible by 7 (see A071746).
LINKS
Ho-Hon Leung, Another Identity for Complete Bell Polynomials based on Ramanujan's Congruences, J. Integer Seq. 21 (2018), Article 18.6.4.
Lasse Winquist, An elementary proof of p(11m+6) == 0 (mod 11), J. Combinatorial Theory 6(1) (1969), 56-59. MR0236136 (38 #4434). - From N. J. A. Sloane, Jun 07 2012
FORMULA
a(n) = A000041(A017041(n)). - Omar E. Pol, Jan 18 2013
a(n) = 7 * A071746(n). - Joerg Arndt, Nov 06 2016
MATHEMATICA
Table[PartitionsP[7 n + 5], {n, 0, 29}] (* Jean-François Alcover, Nov 12 2018 *)
PROG
(PARI) a(n) = numbpart(7*n+5); \\ Michel Marcus, Jan 07 2015
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 07 2012
STATUS
approved