[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A203315
Vandermonde determinant of the first n odd primes.
6
1, 2, 16, 3072, 2949120, 118908518400, 30684105356083200, 509012486930992988160000, 1448974328493266972309245132800000, 24498250851046882007528282887645298688000000, 120709538882209643641596013856771385957962848665600000000
OFFSET
1,2
COMMENTS
Each term divides its successor, as in A203316, and each term is divisible by the corresponding superfactorial, A000178(n), as in A203317.
LINKS
EXAMPLE
v(3)=(5-3)(7-3)(7-5)=16.
MAPLE
Primes:=3:
A[1]:= 1:
for n from 2 to 20 do
Primes:= Primes, ithprime(n+1);
A[n]:= A[n-1] * mul(Primes[n]-Primes[i], i=1..n-1);
od:
seq(A[i], i=1..20); # Robert Israel, Apr 08 2019
MATHEMATICA
f[j_] := Prime[j + 1]; z = 17;
v[n_] := Product[Product[f[k] - f[j], {j, 1, k - 1}], {k, 2, n}]
d[n_] := Product[(i - 1)!, {i, 1, n}]
Table[v[n], {n, 1, z}] (* A203315 *)
Table[v[n + 1]/(2 v[n]), {n, 1, z - 1}] (* A203316 *)
Table[v[n]/d[n], {n, 1, 20}] (* A203317 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 01 2012
STATUS
approved