[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A205007
a(n) = (1/n)*A205006(n), where A205006(n) = s(k)-s(j), with (s(k),s(j)) the least pair of distinct triangular numbers for which n divides their difference.
6
2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
1,1
COMMENTS
For a guide to related sequences, see A204892.
LINKS
MATHEMATICA
(See the program at A205002.)
PROG
(PARI) A205007(n) = for(k=2, oo, my(sk=binomial(k+1, 2)); for(j=1, k-1, if(!((sk-binomial(j+1, 2))%n), return((sk-binomial(j+1, 2))/n)))); \\ Antti Karttunen, Sep 27 2018
CROSSREFS
Cf. A318894 (gives the positions terms larger than one).
Sequence in context: A030346 A030336 A321650 * A078470 A230799 A279496
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 21 2012
EXTENSIONS
More terms from Antti Karttunen, Sep 27 2018
STATUS
approved