[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A204517
Square root of floor[A055859(n)/7].
10
0, 0, 0, 1, 3, 6, 17, 48, 96, 271, 765, 1530, 4319, 12192, 24384, 68833, 194307, 388614, 1097009, 3096720, 6193440, 17483311, 49353213, 98706426, 278635967, 786554688, 1573109376, 4440692161, 12535521795, 25071043590, 70772438609, 199781794032, 399563588064
OFFSET
1,5
FORMULA
A204517(n) = sqrt(floor(A204516(n)^2/7)).
G.f. = (x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6)
PROG
(PARI) b=7; for(n=1, 2e9, issquare(n^2\b) & print1(sqrtint(n^2\b), ", "))
(PARI) A204517(n)=polcoeff((x^4 + 3*x^5 + 6*x^6 + x^7)/(1 - 16*x^3 + x^6+O(x^n)), n)
CROSSREFS
See also A031149=sqrt(A023110) (base 10), A204502=sqrt(A204503) (base 9), A204514=sqrt(A055872) (base 8), A204516=sqrt(A055859) (base 7), A204518=sqrt(A055851) (base 6), A204520=sqrt(A055812) (base 5), A004275=sqrt(A055808) (base 4), A001075=sqrt(A055793) (base 3), A001541=sqrt(A055792) (base 2).
Sequence in context: A321227 A006081 A099511 * A307685 A360273 A287901
KEYWORD
nonn
AUTHOR
M. F. Hasler, Jan 15 2012
STATUS
approved