[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A193561
Augmentation of the triangle A004736. See Comments.
2
1, 2, 1, 6, 6, 3, 24, 36, 30, 15, 120, 240, 270, 210, 105, 720, 1800, 2520, 2520, 1890, 945, 5040, 15120, 25200, 30240, 28350, 20790, 10395, 40320, 141120, 272160, 378000, 415800, 374220, 270270, 135135, 362880, 1451520, 3175200, 4989600
OFFSET
0,2
COMMENTS
For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091.
Regarding A193561, if the triangle is written as (w(n,k)), then
w(n,n)=A001147(n), "double factorial numbers";
w(n,n-1)=A097801(n), (2n)!/(n!*2^(n-1))
col 1: A000142, n!
col 2: A001286, Lah numbers, (n-1)*n!/2
EXAMPLE
First 5 rows of A193560:
1
2.....1
6.....6....3
24....36...30...15
120...240..270..210..105
MATHEMATICA
p[n_, k_] := n + 1 - k
Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A004736 *)
m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
TableForm[m[4]]
w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
v[n_] := v[n - 1].m[n]
TableForm[Table[v[n], {n, 0, 6}]] (* A193561 *)
Flatten[Table[v[n], {n, 0, 8}]]
CROSSREFS
Cf. A193091.
Sequence in context: A075181 A052121 A193895 * A328349 A117965 A111646
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jul 30 2011
STATUS
approved