OFFSET
0,2
COMMENTS
For an introduction to the unary operation "augmentation" as applied to triangular arrays or sequences of polynomials, see A193091.
Regarding A193561, if the triangle is written as (w(n,k)), then
w(n,n)=A001147(n), "double factorial numbers";
w(n,n-1)=A097801(n), (2n)!/(n!*2^(n-1))
col 1: A000142, n!
col 2: A001286, Lah numbers, (n-1)*n!/2
EXAMPLE
MATHEMATICA
p[n_, k_] := n + 1 - k
Table[p[n, k], {n, 0, 5}, {k, 0, n}] (* A004736 *)
m[n_] := Table[If[i <= j, p[n + 1 - i, j - i], 0], {i, n}, {j, n + 1}]
TableForm[m[4]]
w[0, 0] = 1; w[1, 0] = p[1, 0]; w[1, 1] = p[1, 1];
v[0] = w[0, 0]; v[1] = {w[1, 0], w[1, 1]};
v[n_] := v[n - 1].m[n]
TableForm[Table[v[n], {n, 0, 6}]] (* A193561 *)
Flatten[Table[v[n], {n, 0, 8}]]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Jul 30 2011
STATUS
approved