[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A193511
a(n) = Sum of even divisors of Omega(n), a(1) = 0.
3
0, 0, 0, 2, 0, 2, 0, 0, 2, 2, 0, 0, 0, 2, 2, 6, 0, 0, 0, 0, 2, 2, 0, 6, 2, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 6, 0, 2, 2, 6, 0, 0, 0, 0, 0, 2, 0, 0, 2, 0, 2, 0, 0, 6, 2, 6, 2, 2, 0, 6, 0, 2, 0, 8, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0, 0
OFFSET
1,4
COMMENTS
Omega(n) = number of prime divisors of n counted with multiplicity : A001222 (also called bigomega(n)).
a(1) = 0 by convention.
FORMULA
From Antti Karttunen, Jul 23 2017: (Start)
a(1) = 0, for n > 1, a(n) = A146076(A001222(n)).
a(n) + A193512(n) = A290080(n).
(End)
EXAMPLE
a(16) = 6 because Omega(16) = 4 and the sum of the even divisors of 4 {2, 4} is 6.
MATHEMATICA
Table[Total[Select[Divisors[PrimeOmega[n]], EvenQ[ # ]&]], {n, 58}]
PROG
(PARI)
A146076(n) = if(n%2, 0, 2*sigma(n/2)); \\ This function from Michel Marcus, Apr 01 2015
A193511(n) = if(1==n, 0, A146076(bigomega(n))); \\ Antti Karttunen, Jul 23 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 29 2011
EXTENSIONS
Description clarified by Antti Karttunen, Jul 23 2017
STATUS
approved