OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also column 4 of A195825, therefore this sequence contains two plateaus: [1, 1, 1, 1, 1], [4, 4, 4]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 26 2012
The number of partitions of n into parts congruent to 0, 1 or 5 ( mod 6 ). - Peter Bala, Dec 09 2020
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000
K. Bringmann, J. Lovejoy, and K. Mahlburg, A partition identity and the universal mock theta function g_2(x;q), Mathematical Research Letters, 23 (2016), 67-80.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 1 / (psi(x^3) * chi(-x)) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Jun 07 2012
Expansion of q^(1/3) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)^2) in powers of q. - Michael Somos, Jun 07 2012
Euler transform of period 6 sequence [ 1, 0, 0, 0, 1, 1, ...]. - Michael Somos, Oct 18 2014
Convolution inverse of A089802. - Michael Somos, Oct 18 2014
a(n) ~ exp(Pi*sqrt(n/3))/(4*n). - Vaclav Kotesovec, Nov 08 2015
a(n) = (1/n)*Sum_{k=1..n} A284362(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
From Peter Bala, Dec 09 2020: (Start)
O.g.f.: 1/( Product_{n >= 1} (1 - x^(6*n-5))*(1 - x^(6*n-1))*(1 - x^(6*n)) ).
a(n) = a(n-1) + a(n-5) - a(n-8) - a(n-16) + + - - ... (with the convention a(n) = 0 for negative n), where 1, 5, 8, 16, ... is the sequence of generalized octagonal numbers A001082. (End)
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 4*x^9 + 5*x^10 + ...
G.f. = 1/q + q^2 + q^5 + q^8 + q^11 + 2*q^14 + 3*q^17 + 4*q^20 + 4*q^23 + 4*q^26 + ...
MAPLE
A001082 := proc(n)
if type(n, 'even') then
n*(3*n-4)/4 ;
else
(n-1)*(3*n+1)/4 ;
end if;
end proc:
A195838 := proc(n, k)
option remember;
local ks, a, j ;
if A001082(k+1) > n then
0 ;
elif n <= 5 then
return 1;
elif k = 1 then
a := 0 ;
for j from 1 do
if A001082(j+1) <= n-1 then
a := a+procname(n-1, j) ;
else
break;
end if;
end do;
return a;
else
ks := A001082(k+1) ;
(-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
end if;
end proc:
A195848 := proc(n)
A195838(n+1, 1) ;
end proc:
seq(A195848(n), n=0..60) ; # R. J. Mathar, Oct 07 2011
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]^2), {x, 0, n}]; (* Michael Somos, Oct 18 2014 *)
a[ n_] := SeriesCoefficient[ 2 q^(3/8) / (QPochhammer[ q, q^2] EllipticTheta[ 2, 0, q^(3/2)]), {q, 0, n}]; (* Michael Somos, Oct 18 2014 *)
nmax = 60; CoefficientList[Series[Product[(1+x^k) / ((1+x^(3*k)) * (1-x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 08 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)^2), n))}; /* Michael Somos, Jun 07 2012 */
From Omar E. Pol, Jun 10 2012: (Start)
(GW-BASIC)' A program with two A-numbers:
20 For n = 1 to 58: For j = 1 to n
40 Next j: Print a(n-1); : Next n (End)
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Omar E. Pol, Sep 24 2011
EXTENSIONS
New sequence name from Michael Somos, Oct 18 2014
STATUS
approved