[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A178138
Apply partial sum operator 4 times to primes.
8
2, 11, 37, 97, 219, 444, 830, 1454, 2416, 3845, 5901, 8781, 12723, 18008, 24964, 33972, 45472, 59965, 78019, 100273, 127439, 160308, 199754, 246740, 302326, 367673, 444045, 532813, 635457, 753570, 888872, 1043214, 1218584
OFFSET
1,1
COMMENTS
Unlike the results of applying the partial sum operator once (A007504), twice (A014148), or thrice (A014150) to primes, this sequence begins with 4 primes. The next prime in the sequence is a(26) = 367673.
Row 4 in A254858. - Reinhard Zumkeller, Feb 08 2015
LINKS
EXAMPLE
a(15) = 2 + 9 + 26 + 60 + 122 + 225 + 386 + 624 + 962 + 1429 + 2056 + 2880 + 3942 + 5285 + 6956 = 24964 = 2^2 x 79^2.
MAPLE
Contribution from R. J. Mathar, Oct 19 2010: (Start)
A007504 := proc(n) option remember; add( ithprime(i), i=1..n) ; end proc:
A014148 := proc(n) option remember; add( A007504(i), i=1..n) ; end proc:
A014150 := proc(n) option remember; add( A014148(i), i=1..n) ; end proc:
A178138 := proc(n) option remember; add( A014150(i), i=1..n) ; end proc: seq(A178138(n), n=1..80) ; (End)
MATHEMATICA
Nest[Accumulate[#]&, Prime[Range[40]], 4] (* Harvey P. Dale, Sep 25 2014 *)
PROG
(Haskell)
a178138 n = a178138_list !! (n-1)
a178138_list = (iterate (scanl1 (+)) a000040_list) !! 4
-- Reinhard Zumkeller, Feb 08 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 20 2010
STATUS
approved