[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143349
Triangle read by rows: A000012 * A054524 = A000012 * A051731 * A128407.
2
1, 2, -1, 3, -1, -1, 4, -2, -1, 0, 5, -2, -1, 0, -1, 6, -3, -2, 0, -1, 1, 7, -3, -2, 0, -1, 1, -1, 8, -4, -2, 0, -1, 1, -1, 0, 9, -4, -3, 0, -1, 1, -1, 0, 0, 10, -5, -3, 0, -2, 1, -1, 0, 0, 1, 11, -5, -3, 0, -2, 1, -1, 0, 0, 1, -1, 12, -6, -4, 0, -2, 2, -1, 0, 0, 1, -1, 0, 13, -6, -4, 0, -2, 2, -1, 0, 0, 1, -1, 0, -1, 14, -7, -4, 0, -2, 2, -2, 0, 0, 1, -1, 0, -1, 1
OFFSET
1,2
COMMENTS
The triangle acts as a transform converting any sequence S(k) into a triangle with row sums = S(k). By way of example, begin with S(k), the primes: (2, 3, 5, 7, 11, ...). Add (0, 1, 2, 3, 4, ...) to the sequence getting (prime(n)+(n-1)) = (2, 4, 7, 10, 15, 18, 23, 36, 31, ...) = sequence Q(k). Then replace column 1 (1, 2, 3, ...) of triangle A143349 with sequence Q(k). This = triangle A143350 with row sums prime(n):
2;
4, -1;
7, -1, -1;
10, -2, -1, 0;
...
The A000012 multiplier takes partial sums of A054524 column terms. A051731 is the inverse Mobius transform and A128407 = an infinite lower triangular matrix with mu(n) in the main diagonal and the rest zeros.
EXAMPLE
First few rows of the triangle:
1;
2, -1;
3, -1, -1;
4, -2, -1, 0;
5, -2, -1, 0, -1;
6, -3, -2, 0, -1, 1;
7, -3, -2, 0, -1, 1, -1;
8, -4, -2, 0, -1, 1, -1, 0;
9, -4, -3, 0, -1, 1, -1, 0, 0;
10, -5, -3, 0, -2, 1, -1, 0, 0, 1;
11, -5, -3, 0, -2, 1, -1, 0, 0, 1, -1;
12, -6, -4, 0, -2, 2, -1, 0, 0, 1, -1, 0;
13, -6, -4, 0, -2, 2, -1, 0, 0, 1, -1, 0, -1;
14, -7, -4, 0, -2, 2, -2, 0, 0, 1, -1, 0, -1, 1;
...
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Gary W. Adamson, Aug 10 2008
EXTENSIONS
a(39) ff. corrected by Georg Fischer, Jun 05 2023
STATUS
approved