[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A120171
a(n) = 2 + floor((1 + Sum_{j=1..n-1} a(j))/5)
2
2, 2, 3, 3, 4, 5, 6, 7, 8, 10, 12, 14, 17, 20, 24, 29, 35, 42, 50, 60, 72, 87, 104, 125, 150, 180, 216, 259, 311, 373, 448, 537, 645, 774, 929, 1114, 1337, 1605, 1926, 2311, 2773, 3328, 3993, 4792, 5750, 6900, 8280, 9936, 11923, 14308, 17170, 20604, 24724, 29669
OFFSET
1,1
LINKS
MATHEMATICA
f[s_] := Append[s, Floor[(11 + Plus @@ s)/5]]; Nest[f, {2}, 53] (* Robert G. Wilson v, Jul 08 2006 *)
PROG
(Magma)
function f(n, a, b)
t:=0;
for k in [1..n-1] do
t+:= a+Floor((b+t)/5);
end for;
return t;
end function;
g:= func< n, a, b | f(n+1, a, b)-f(n, a, b) >;
A120171:= func< n | g(n, 2, 1) >;
[A120171(n): n in [1..60]]; // G. C. Greubel, Dec 25 2023
(SageMath)
@CachedFunction
def f(n, p, q): return p + (q +sum(f(k, p, q) for k in range(1, n)))//5
def A120171(n): return f(n, 2, 1)
[A120171(n) for n in range(1, 61)] # G. C. Greubel, Dec 25 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Graeme McRae, Jun 10 2006
EXTENSIONS
More terms from Robert G. Wilson v, Jul 08 2006
STATUS
approved