[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096165
Prime powers with exponents that are themselves prime powers.
3
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227
OFFSET
1,1
COMMENTS
A000040, A053810, A050376 and A082522 are subsequences;
a(n) = A000961(n+1) for 1<=n<=26.
Complement of A164345 with respect to A000961.
LINKS
FORMULA
a(n) ~ n log n. - Charles R Greathouse IV, Oct 19 2015
EXAMPLE
512=2^9=2^(3^2), A000961(118)=A000040(1)^A000961(118), therefore 512 is a term;
64=2^6, but 6 is not a prime power, therefore 64 is not a term.
MAPLE
F:= proc(t) local P;
P:= ifactors(t)[2];
nops(P) = 1 and (P[1][2]=1 or nops(numtheory:-factorset(P[1][2]))=1)
end proc:
select(F, [$2..1000]); # Robert Israel, Jul 20 2015
MATHEMATICA
Select[Range@ 240, Or[PrimeQ@ #, PrimePowerQ@ # && PrimePowerQ@ FactorInteger[#][[1, 2]]] &] (* Michael De Vlieger, Jul 20 2015 *)
PROG
(Haskell)
a096165 n = a096165_list !! (n-1)
a096165_list = filter ((== 1) . a010055 . a001222) $ tail a000961_list
-- Reinhard Zumkeller, Nov 17 2011
(PARI) is(n)=while(1, if(!(n=isprimepower(n)), return(0), if(n==1, return(1)))) \\ Anders Hellström, Jul 19 2015
(PARI) ispp(n)=n==1 || isprimepower(n)
is(n)=ispp(isprimepower(n)) \\ Charles R Greathouse IV, Oct 19 2015
(Python)
from sympy import primepi, integer_nthroot, factorint
def A096165(n):
def f(x): return int(n+x-sum(primepi(integer_nthroot(x, k)[0]) for k in range(1, x.bit_length()) if len(factorint(k))<=1))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return bisection(f, n, n) # Chai Wah Wu, Sep 12 2024
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jul 25 2004
STATUS
approved