OFFSET
1,3
COMMENTS
From Petros Hadjicostas, Nov 29 2017: (Start)
The formula given below is clear from the programs given in the Maple and Mathematica sections, while the g.f. for column k can be obtained using standard techniques.
If we differentiate the column k g.f. m times, then we can get a formula for row m. (For this sequence, we only need to use this row m formula for 1 <= k <= m, but it is valid even for k>m.) For example, to get the formula for row 8, we have T(n=8,k) = d^8/dx^8 (column k g.f.)/8! evaluated at x=0. Here, "d^8/dx^8" means "8th derivative w.r.t. x" of the column k g.f. Doing so, we get T(n=8, k) = (k^6 - k^5 + k^4 + 3*k^3 + 2*k^2 - 2*k + 4)*(k + 1)*k/16, which is the formula given for sequence A060560. (Here, we use this formula only for 1 <= k <= 8.)
(End)
REFERENCES
N. Zagaglia Salvi, Ordered partitions and colourings of cycles and necklaces, Bull. Inst. Combin. Appl., 27 (1999), 37-40.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
Yi Hu, Numerical Transfer Matrix Method of Next-nearest-neighbor Ising Models, Master's Thesis, Duke Univ. (2021).
Yi Hu and Patrick Charbonneau, Numerical transfer matrix study of frustrated next-nearest-neighbor Ising models on square lattices, arXiv:2106.08442 [cond-mat.stat-mech], 2021, cites the 4th column.
FORMULA
See Maple code.
From Petros Hadjicostas, Nov 29 2017: (Start)
T(n,k) = ((1+k)*k^{n/2}/2 + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is even, and = (k^{(n+1)/2} + (1/n)*Sum_{d|n} phi(n/d)*k^d)/2, if n is odd.
G.f. for column k: (1/2)*((k*x+k*(k+1)*x^2/2)/(1-k*x^2) - Sum_{n>=1} (phi(n)/n)*log(1-k*x^n)) provided we chop off the Taylor expansion starting at x^k (and ignore all the terms x^n with n<k).
(End)
2*n*T(n,k) = A054618(n,k)+n*(1+k)^(n/2)/2 if n even, = A054618(n,k)+n*k^((n+1)/2) if n odd. - R. J. Mathar, Jan 23 2022
EXAMPLE
1; (A000027)
1, 3; (A000217)
1, 4, 10; (A000292)
1, 6, 21, 55; (A002817)
1, 8, 39, 136, 377; (A060446)
1, 13, 92, 430, 1505, 4291; (A027670)
1, 18, 198, 1300, 5895, 20646, 60028; (A060532)
1, 30, 498, 4435, 25395, 107331, 365260, 1058058; (A060560)
...
For example, when n=k=3, we have the following T(3,3)=10 bracelets of 3 beads using up to 3 colors: 000, 001, 002, 011, 012, 022, 111, 112, 122, and 222. (Note that 012 = 120 = 201 = 210 = 102 = 021.) Petros Hadjicostas, Nov 29 2017
MAPLE
A081720 := proc(n, k)
local d, t1;
t1 := 0;
if n mod 2 = 0 then
for d from 1 to n do
if n mod d = 0 then
t1 := t1+numtheory[phi](d)*k^(n/d);
end if;
end do:
(t1+(n/2)*(1+k)*k^(n/2)) /(2*n) ;
else
for d from 1 to n do
if n mod d = 0 then
t1 := t1+numtheory[phi](d)*k^(n/d);
end if;
end do;
(t1+n*k^((n+1)/2)) /(2*n) ;
end if;
end proc:
seq(seq(A081720(n, k), k=1..n), n=1..10) ;
MATHEMATICA
t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n + 1)/2))/(2*n)]); Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 13 2012, after Maple, updated Nov 02 2017 *)
Needs["Combinatorica`"]; Table[Table[NumberOfNecklaces[n, k, Dihedral], {k, 1, n}], {n, 1, 8}]//Grid (* Geoffrey Critzer, Oct 07 2012, after code by T. D. Noe in A027671 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, based on information supplied by Gary W. Adamson, Apr 05 2003
EXTENSIONS
Name edited by Petros Hadjicostas, Nov 29 2017
STATUS
approved