[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A081625
a(n) = 2*5^n - 3^n.
6
1, 7, 41, 223, 1169, 6007, 30521, 154063, 774689, 3886567, 19472201, 97479103, 487749809, 2439811927, 12202248281, 61020807343, 305132734529, 1525749766087, 7629007110761, 38145810394783, 190731376496849
OFFSET
0,2
COMMENTS
Binomial transform of A016516. Inverse binomial transform of A081626.
Row sums of the triangle of 2^n terms shown in A178590 appears to = A081625. - Gary W. Adamson, May 29 2010
Binomial transform of A006516: (1, 6, 28, 120, 496, ...). - Gary W. Adamson, May 31 2010
FORMULA
a(n) = 8*a(n-1) - 15*a(n-2), a(0)=1, a(1)=7.
G.f.: (1-x)/((1-3*x)(1-5*x)).
E.g.f. 2*exp(5*x) - exp(3*x).
a(n) = Sum_{k=0..n} A125185(n,k)*3^k. - Philippe Deléham, Feb 26 2012
MATHEMATICA
CoefficientList[Series[(1 - x) / ((1 - 3 x) (1 - 5 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 09 2013 *)
LinearRecurrence[{8, -15}, {1, 7}, 30] (* Harvey P. Dale, Oct 14 2013 *)
PROG
(Magma) [2*5^n-3^n: n in [0..25]]; // Vincenzo Librandi, Aug 09 2013
CROSSREFS
Sequence in context: A168584 A191010 A239041 * A144635 A097165 A152268
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 25 2003
STATUS
approved