OFFSET
0,8
LINKS
G. C. Greubel, Antidiagonals n = 0..100, flattened
EXAMPLE
0 0 0 0 0 0 0 0 0
0 1 3 6 10 15 21 28 36
0 2 6 12 20 30 42 56 72
0 3 9 18 30 45 63 84 108
0 4 12 24 40 60 84 112 144
0 5 15 30 50 75 105 140 180
0 6 18 36 60 90 126 168 216
0 7 21 42 70 105 147 196 252
0 8 24 48 80 120 168 224 288
MAPLE
seq(seq(k*binomial(n-k+1, 2), k=0..n), n=0..12); # G. C. Greubel, Sep 02 2019
MATHEMATICA
Table[k*Binomial[n-k+1, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Sep 02 2019 *)
PROG
(PARI) T(n, k) = k*binomial(n-k+1, 2);
for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Sep 02 2019
(Magma) [k*Binomial(n-k+1, 2): k in [0..n], n in [0..12]]; // G. C. Greubel, Sep 02 2019
(Sage) [[k*binomial(n-k+1, 2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 02 2019
(GAP) Flat(List([0..12], n-> List([0..n], k-> k*Binomial(n-k+1, 2)))); # G. C. Greubel, Sep 02 2019
CROSSREFS
KEYWORD
AUTHOR
Henry Bottomley, Jul 11 2001
STATUS
approved