[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051293
Number of nonempty subsets of {1,2,3,...,n} whose elements have an integer average.
106
1, 2, 5, 8, 15, 26, 45, 76, 135, 238, 425, 768, 1399, 2570, 4761, 8856, 16567, 31138, 58733, 111164, 211043, 401694, 766417, 1465488, 2807671, 5388782, 10359849, 19946832, 38459623, 74251094, 143524761, 277742488, 538043663, 1043333934, 2025040765, 3933915348
OFFSET
1,2
COMMENTS
a(n) is asymptotic to 2^(n+1)/n. More precisely, I conjecture for any m > 0, a(n) = 2^(n+1)/n * Sum_{k=0..m} A000670(k)/n^k + o(1/n^(m+1)) (A000670 = preferential arrangements of n labeled elements) which can be written a(n) = 2^n/n * 2 + Sum_{k=1..m} A000629(k)/n^k + o(1/n^(m+1)) (A000629 = necklaces of sets of labeled beads). In fact I conjecture that a(n) = 2^(n+1)/n * (1 + 1/n + 3/n^2 + 13/n^3 + 75/n^4 + 541/n^5 + o(1/n^5)). - Benoit Cloitre, Oct 20 2002
A082550(n) = a(n+1) - a(n). - Reinhard Zumkeller, Feb 19 2006
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..3332 (first 300 terms from T. D. Noe)
63rd Annual William Lowell Putnam Mathematical Competition, Problem A3, Mathematics Magazine 76 (2003), 76-80.
FORMULA
a(n) = Sum_{i=1..n} (A063776(i) - 1).
EXAMPLE
a(4) = 8 because each of the 8 subsets {1}, {2}, {3}, {4}, {1,3}, {2,4}, {1,2,3}, {2,3,4} has an integer average.
MAPLE
with(numtheory):
b:= n-> add(2^(n/d)*phi(d), d=select(x-> x::odd, divisors(n)))/n:
a:= proc(n) option remember; `if`(n<1, 0, b(n)-1+a(n-1)) end:
seq(a(n), n=1..40); # Alois P. Heinz, Jul 15 2019
MATHEMATICA
Table[ Sum[a = Select[Divisors[i], OddQ[ # ] & ]; Apply[Plus, 2^(i/a)*EulerPhi[a]]/i, {i, n}] - n, {n, 34}]
Table[Count[Subsets[Range[n]], _?(IntegerQ[Mean[#]]&)], {n, 35}] (* Harvey P. Dale, Apr 14 2018 *)
PROG
(PARI) a(n)=sum(k=1, n, sumdiv(k, d, d%2*2^(k/d)*eulerphi(d))/k-1)
(Python)
from sympy import totient, divisors
def A051293(n): return sum((sum(totient(d)<<k//d-1 for d in divisors(k>>(~k&k-1).bit_length(), generator=True))<<1)//k for k in range(1, n+1))-n # Chai Wah Wu, Feb 22 2023
CROSSREFS
Row sums of A061865 and A327481.
Sequence in context: A154327 A074027 A018156 * A081660 A285291 A065618
KEYWORD
nonn,nice
AUTHOR
John W. Layman, Oct 30 1999
EXTENSIONS
Extended by Robert G. Wilson v, Oct 16 2002
STATUS
approved