OFFSET
1,2
COMMENTS
Generalized Bell numbers B(6,1;n).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..360
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
E.g.f.: exp(-1+1/(1-5*x)^(1/5))-1.
a(n) = (1/e) * (-5)^n * n! * Sum_{k>=0} binomial(-k/5,n)/k!. - Seiichi Manyama, Jan 17 2025
MATHEMATICA
terms = 16;
Rest[CoefficientList[Exp[-1+1/(1-5x)^(1/5)]-1+O[x]^(terms+1), x]] Range[ terms]! (* Jean-François Alcover, Nov 11 2018 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
STATUS
approved