[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049412
Row sums of triangle A049385.
5
1, 7, 85, 1465, 32677, 894103, 28977817, 1085272945, 46112305897, 2191384887175, 115164935076445, 6631403822046697, 415179375712149517, 28079663069162365207, 2040146099677929685345, 158473205735310372796897, 13105410949812720002967889, 1149574078597445578977405319
OFFSET
1,2
COMMENTS
Generalized Bell numbers B(6,1;n).
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, arXiv:quant-ph/0402027, 2004.
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
FORMULA
E.g.f.: exp(-1+1/(1-5*x)^(1/5))-1.
a(n) = (1/e) * (-5)^n * n! * Sum_{k>=0} binomial(-k/5,n)/k!. - Seiichi Manyama, Jan 17 2025
MATHEMATICA
terms = 16;
Rest[CoefficientList[Exp[-1+1/(1-5x)^(1/5)]-1+O[x]^(terms+1), x]] Range[ terms]! (* Jean-François Alcover, Nov 11 2018 *)
CROSSREFS
Cf. Generalized Bell numbers B(m, 1, n): A049118 (m=3), A049119 (m=4), A049120 (m=5), this sequence (m=6).
Sequence in context: A317353 A302565 A369372 * A346984 A361065 A056547
KEYWORD
nonn,changed
STATUS
approved