[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049120
Row sums of triangle A049029.
8
1, 6, 61, 871, 15996, 358891, 9509641, 290528316, 10051973371, 388433817091, 16579346005806, 774580047063901, 39313104018590221, 2153825039102763846, 126681355435102649161, 7961385691338995966371, 532402860878855993673036
OFFSET
1,2
COMMENTS
Generalized Bell numbers B(5,1;n).
REFERENCES
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem, Phys. Lett. A 309 (2003) 198-205.
LINKS
W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
P. Blasiak, K. A. Penson and A. I. Solomon, The general boson normal ordering problem.
FORMULA
E.g.f. exp(-1+1/(1-4*x)^(1/4))-1.
Representation of a(n) as the n-th moment of a positive function on positive half-axis (Stieltjes moment problem), in Maple notation: a(n)=int(x^n*exp(-1)*exp(-1/4*x)*(1/96*x*hypergeom([],[5/4, 3/2, 7/4, 2],1/1024*x)+ 1/8*4^(3/4)*x^(1/4)/Pi*2^(1/2)*GAMMA(3/4)*hypergeom([],[1/4, 1/2,3/4, 5/4],1/1024*x)+1/8*4^(1/2)*x^(1/2)/Pi^(1/2)*hypergeom([],[1/2, 3/4, 5/4,3/2],1/1024*x)+1/24*4^(1/4)*x^(3/4)/GAMMA(3/4)*hypergeom([],[3/4, 5/4, 3/2,7/4],1/1024*x))/x, x=0..infinity),n=1,2... . - Karol A. Penson, Dec 16 2007
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator (1+x)^5*d/dx. Cf. A000110, A000262, A049118 and A049119. - Peter Bala, Nov 25 2011
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[-1+1/Surd[1-4x, 4]]-1, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 10 2019 *)
CROSSREFS
Cf. A049119, generalized Bell numbers B(4, 1, n). A049118.
Sequence in context: A047737 A302535 A086403 * A346983 A271841 A361526
KEYWORD
easy,nonn
STATUS
approved