[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A033441
Number of edges in 9-partite Turán graph of order n.
11
0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 44, 53, 63, 74, 86, 99, 113, 128, 144, 160, 177, 195, 214, 234, 255, 277, 300, 324, 348, 373, 399, 426, 454, 483, 513, 544, 576, 608, 641, 675, 710, 746, 783, 821, 860, 900, 940, 981, 1023, 1066, 1110, 1155, 1201, 1248, 1296
OFFSET
0,4
REFERENCES
Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.
LINKS
Christian Meyer, On conjecture no. 76 arising from the OEIS, preprint, 2004. [cached copy]
Ralf Stephan, Prove or disprove: 100 conjectures from the OEIS, arXiv:math/0409509 [math.CO], 2004.
Eric Weisstein's World of Mathematics, Turán Graph [From Reinhard Zumkeller, Nov 30 2009]
Wikipedia, Turán graph [From Reinhard Zumkeller, Nov 30 2009]
Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1).
FORMULA
G.f.: x*(1/(1-x) - 1/(1-x^9))/(1-x)^2. - Ralf Stephan, Mar 05 2004
a(n) = Sum_{k=0..n} A168182(k)*(n-k). - Reinhard Zumkeller, Nov 30 2009
G.f.: -x^2*(x+1)*(x^2+1)*(x^4+1)/((x-1)^3*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Aug 09 2012
a(n) = Sum_{i=1..n} floor(8*i/9). - Wesley Ivan Hurt, Sep 12 2017
MATHEMATICA
CoefficientList[Series[- x^2 (x + 1) (x^2 + 1) (x^4 + 1)/((x - 1)^3 (x^2 + x + 1) (x^6 + x^3 + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 20 2013 *)
LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 1, 3, 6, 10, 15, 21, 28, 36, 44}, 55] (* Ray Chandler, Aug 04 2015 *)
CROSSREFS
Sequence in context: A231684 A363777 A108923 * A338334 A107082 A267238
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Oct 20 2013
STATUS
approved