[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A033439
Number of edges in 7-partite Turán graph of order n.
13
0, 0, 1, 3, 6, 10, 15, 21, 27, 34, 42, 51, 61, 72, 84, 96, 109, 123, 138, 154, 171, 189, 207, 226, 246, 267, 289, 312, 336, 360, 385, 411, 438, 466, 495, 525, 555, 586, 618, 651, 685, 720, 756, 792, 829, 867, 906, 946, 987, 1029, 1071, 1114, 1158, 1203, 1249
OFFSET
0,4
COMMENTS
Apart from the initial term this is the elliptic troublemaker sequence R_n(1,7) (also sequence R_n(6,7)) in the notation of Stange (see Table 1, p.16). For other elliptic troublemaker sequences R_n(a,b) see the cross references below. - Peter Bala, Aug 12 2013
REFERENCES
Graham et al., Handbook of Combinatorics, Vol. 2, p. 1234.
LINKS
Eric Weisstein's World of Mathematics, Turán Graph [Reinhard Zumkeller, Nov 30 2009]
Wikipedia, Turán graph [Reinhard Zumkeller, Nov 30 2009]
FORMULA
a(n) = Sum_{k=0..n} A109720(k)*(n-k). [Reinhard Zumkeller, Nov 30 2009]
G.f.: -x^2*(x+1)*(x^2-x+1)*(x^2+x+1)/((x-1)^3*(x^6+x^5+x^4+x^3+x^2+x+1)). [Colin Barker, Aug 09 2012]
a(n) = floor(3*n^2/7). - Peter Bala, Aug 12 2013
a(0)=0, a(1)=0, a(2)=1, a(3)=3, a(4)=6, a(5)=10, a(6)=15, a(7)=21, a(8)=27, a(n)=2*a(n-1)-a(n-2)+a(n-7)-2*a(n-8)+a(n-9). - Harvey P. Dale, Mar 19 2015
a(n) = Sum_{i=1..n} floor(6*i/7). - Wesley Ivan Hurt, Sep 12 2017
MATHEMATICA
CoefficientList[Series[- x^2 (x + 1) (x^2 - x + 1) (x^2 + x + 1)/((x - 1)^3 (x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Oct 19 2013 *)
LinearRecurrence[{2, -1, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 1, 3, 6, 10, 15, 21, 27}, 60] (* Harvey P. Dale, Mar 19 2015 *)
PROG
(Magma) [Floor(3*n^2/7): n in [0..60]]; // Vincenzo Librandi, Oct 19 2013
CROSSREFS
Elliptic troublemaker sequences: A007590 (= R_n(2,4)), A030511 (= R_n(2,6) = R_n(4,6)), A184535 (= R_n(2,5) = R_n(3,5)).
Sequence in context: A310081 A357779 A240443 * A194082 A061786 A171971
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Oct 19 2013
STATUS
approved