[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034801
Triangle of Fibonomial coefficients (k=2).
8
1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 21, 56, 21, 1, 1, 55, 385, 385, 55, 1, 1, 144, 2640, 6930, 2640, 144, 1, 1, 377, 18096, 124410, 124410, 18096, 377, 1, 1, 987, 124033, 2232594, 5847270, 2232594, 124033, 987, 1, 1, 2584, 850136, 40062659, 274715376, 274715376, 40062659, 850136, 2584, 1
OFFSET
0,5
REFERENCES
A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 88.
LINKS
C. Pita, On s-Fibonomials, J. Int. Seq. 14 (2011) # 11.3.7.
C. J. Pita Ruiz Velasco, Sums of Products of s-Fibonacci Polynomial Sequences, J. Int. Seq. 14 (2011) # 11.7.6.
FORMULA
Fibonomial coefficients formed from sequence F_3k [ 2, 8, 34, ... ].
T(n, k) = Product_{j=0..k-1} Fibonacci(2*(n-j)) / Product_{j=1..k} Fibonacci(2*j).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 8, 8, 1;
1, 21, 56, 21, 1;
1, 55, 385, 385, 55, 1;
1, 144, 2640, 6930, 2640, 144, 1;
1, 377, 18096, 124410, 124410, 18096, 377, 1;
1, 987, 124033, 2232594, 5847270, 2232594, 124033, 987, 1;
MAPLE
A034801 := proc(n, k)
mul(combinat[fibonacci](2*n-2*j), j=0..k-1) /
mul(combinat[fibonacci](2*j), j=1..k) ;
end proc: # R. J. Mathar, Sep 02 2017
MATHEMATICA
F[n_, k_, q_]:= Product[Fibonacci[q*(n-j+1)]/Fibonacci[q*j], {j, k}];
Table[F[n, k, 2], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 13 2019 *)
PROG
(PARI) F(n, k, q) = f=fibonacci; prod(j=1, k, f(q*(n-j+1))/f(q*j)); \\ G. C. Greubel, Nov 13 2019
(Sage)
def F(n, k, q):
if (n==0 and k==0): return 1
else: return product(fibonacci(q*(n-j+1))/fibonacci(q*j) for j in (1..k))
[[F(n, k, 2) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 13 2019
(GAP)
F:= function(n, k, q)
if n=0 and k=0 then return 1;
else return Product([1..k], j-> Fibonacci(q*(n-j+1))/Fibonacci(q*j));
fi;
end;
Flat(List([0..10], n-> List([0..n], k-> F(n, k, 2) ))); # G. C. Greubel, Nov 13 2019
CROSSREFS
Cf. A010048.
Sequence in context: A157210 A359573 A359575 * A331890 A102435 A340882
KEYWORD
nonn,tabl
EXTENSIONS
More terms from James A. Sellers, Feb 09 2000
STATUS
approved