[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A027385
Number of primitive polynomials of degree n over GF(3).
11
1, 2, 4, 8, 22, 48, 156, 320, 1008, 2640, 7700, 13824, 61320, 170352, 401280, 983040, 3796100, 7838208, 30566592, 62304000, 229686912, 670824000, 2003046356, 3583180800, 15403487000, 48881851200, 128672022528, 314657860608, 1163185915872, 2340264960000, 9947788640064
OFFSET
1,2
COMMENTS
Second row of the array A158502(n, k) = phi(p^k-1)/k, p=prime(n). - R. J. Mathar, Aug 24 2011
From Joerg Arndt, Oct 03 2012: (Start)
Number of base-3, length-n Lyndon words w such that gcd(w, 3^n-1)==1 (where w is interpreted as a radix-3 number); replacing 3 by any prime p gives the analogous statement for GF(p).
The statement above is the consequence of the following.
Let p be a prime and g be a generator of GF(p^n). If w is a base-p, length-n Lyndon word then f=g^w (where w is interpreted as a radix-p number) has an irreducible characteristic polynomial C (over GF(p)) and, if gcd(w,p^n-1)==1 then C is primitive.
(End)
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..200 (terms 1..100 from Seiichi Manyama)
Eric W. Weisstein, MathWorld: Totient Function
MAPLE
A027385 := proc(n) numtheory[phi](3^n-1)/n; end proc:
MATHEMATICA
Table[EulerPhi[3^n - 1]/n, {n, 1, 30}] (* Vaclav Kotesovec, Nov 23 2017 *)
PROG
(PARI) a(n) = eulerphi(3^n-1)/n; /* Joerg Arndt, Aug 25 2011 */
CROSSREFS
Sequence in context: A027713 A155765 A217975 * A158324 A002075 A337720
KEYWORD
nonn,changed
AUTHOR
STATUS
approved