[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A026545
a(n) = T(2n-1, n-1), T given by A026536.
2
1, 1, 6, 19, 79, 306, 1247, 5069, 20889, 86479, 360205, 1506462, 6324176, 26630423, 112439094, 475838291, 2017827545, 8572102713, 36474080228, 155418445421, 663102388605, 2832471934357, 12111891668431, 51841780973922, 222092855692496, 952237575555176, 4085873505697131, 17544024146446621
OFFSET
1,3
LINKS
FORMULA
a(n) = A026536(2*n-1, n-1).
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k==0 || k==2*n, 1, If[k==1 || k==2*n-1, Floor[n/2], If[EvenQ[n], T[n-1, k-2] +T[n-1, k-1] +T[n-1, k], T[n-1, k-2] +T[n-1, k]] ]];
Table[T[2*n-1, n-1], {n, 40}] (* G. C. Greubel, Apr 11 2022 *)
PROG
(SageMath)
@CachedFunction
def T(n, k): # A026536
if k < 0 or n < 0: return 0
elif k == 0 or k == 2*n: return 1
elif k == 1 or k == 2*n-1: return n//2
elif n % 2 == 1: return T(n-1, k-2) + T(n-1, k)
return T(n-1, k-2) + T(n-1, k-1) + T(n-1, k)
def A026545(n): return T(2*n-1, n-1)
[A026545(n) for n in (1..40)] # G. C. Greubel, Apr 11 2022
CROSSREFS
Cf. A026536.
Sequence in context: A191585 A359190 A220795 * A041937 A279512 A111510
KEYWORD
nonn
EXTENSIONS
Terms a(20) onward added by G. C. Greubel, Apr 11 2022
STATUS
approved