[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A013516
Denominators in the Taylor expansion exp(cosec(x)-cot(x))=1 + x/2 + x^2/8 + x^3/16 + 3*x^4/128 + 37*x^5/3840 + 59*x^6/15360 + ...
1
1, 2, 8, 16, 128, 3840, 15360, 92160, 1474560, 185794560, 3715891200, 117964800, 2831155200, 51011754393600, 13603134504960, 8569974738124800, 1371195958099968000, 46620662575398912000, 239763407530622976000
OFFSET
0,2
COMMENTS
The numerators are apparently the same as A047691.
FORMULA
a(n) = A047692(n) * 2^n. - Sean A. Irvine, Aug 07 2018
EXAMPLE
exp(cosec(x)-cot(x)) = 1 +1*x/(2^1*1!) + 1*x^2/(2^2*2!) + 3*x^3/(2^3*3!) + 9*x^4/(2^4*4!) + 37*x^5/(2^5*5!) + 177*x^6/(2^6*6!) +959*x^7/(2^7*7!)+ ...
MAPLE
A013516 := proc(n)
exp(csc(x)-cot(x)) ;
coeftayl( %, x=0, n) ;
denom(%) ;
end proc: # R. J. Mathar, Dec 18 2011
CROSSREFS
Cf. A006229, A002425 (expansion of cosec(x)-cot(x)).
Sequence in context: A046161 A092978 A280777 * A259688 A101059 A191999
KEYWORD
nonn,frac
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
EXTENSIONS
Corrected by R. J. Mathar, Dec 18 2011
STATUS
approved