[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A011558
Expansion of (x + x^3)/(1 + x + ... + x^4) mod 2.
28
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0
OFFSET
0,1
COMMENTS
Multiplicative with a(5^e) = 0, a(p^e) = 1 otherwise. - David W. Wilson, Jun 12 2005
Characteristic function of numbers coprime to 5. - Reinhard Zumkeller, Nov 30 2009
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the principal Dirichlet character mod 5. (The other real character mod 5 is A080891.)
Associated Dirichlet L-functions are for example L(2,chi) = Sum_{n>=1} a(n)/n^2 = 1.5791367... = (psi'(1/5) + psi'(2/5) + psi'(3/5) + psi'(4/5))/25 or L(3,chi) = Sum_{n>=1} a(n)/n^3 = 1.192440... = -(psi''(1/5) + psi''(2/5) + psi''(3/5) + psi''(4/5))/250, where psi' and psi'' are the trigamma and tetragamma functions. (End)
a(n) is for n >= 1 also the characteristic function for rational g-adic integers (+n/5)_g and also (-n/5)_g for all integers g >= 2 without a factor of 5 (A047201). See the definition in the Mahler reference, p. 7 and also p. 10. - Wolfdieter Lang, Jul 11 2014
Conjecture: a(n+1) is the number of ways of partitioning n into distinct parts of A084215. - R. J. Mathar, Mar 01 2023
REFERENCES
Arthur Gill, Linear Sequential Circuits, McGraw-Hill, 1966, Eq. (17-10).
K. Mahler, p-adic numbers and their functions, 2nd ed., Cambridge University press, 1981.
FORMULA
O.g.f.: x*(1+x+x^2+x^3)/(1-x^5). - Wolfdieter Lang, Feb 05 2009
From Reinhard Zumkeller, Nov 30 2009: (Start)
a(n) = 1 - A079998(n).
a(A047201(n))=1, a(A008587(n))=0.
A033437(n) = Sum_{k=0..n} a(k)*(n-k). (End)
a(n) = n^4 mod 5. - Gary Detlefs, Mar 20 2010
Sum_{n>=1} a(n)/n^s = L(s,chi) = (1-1/5^s)*Riemann_zeta(s), s > 1. - R. J. Mathar, Jul 31 2010
For the general case. The characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m,n > 0. - Boris Putievskiy, May 08 2013
a(n) = sgn(n mod 5). - Wesley Ivan Hurt, Jun 30 2013
Euler transform of length 5 sequence [ 1, 0, 0, -1, 1]. - Michael Somos, May 24 2015
Moebius transform is length 5 sequence [ 1, 0, 0, 0, -1]. - Michael Somos, May 24 2015
G.f.: f(x) - f(x^5) where f(x) := x / (1 - x). - Michael Somos, May 24 2015
|a(n)| = |A080891(n)| = |A100047(n)|. - Michael Somos, May 24 2015
EXAMPLE
G.f. = x + x^2 + x^3 + x^4 + x^6 + x^7 + x^8 + x^9 + x^11 + x^12 + ...
MAPLE
seq(n&^4 mod 5, n=0..50); # Gary Detlefs, Mar 20 2010
MATHEMATICA
Mod[#, 2]&/@CoefficientList[Series[(x+x^3)/(1+x+x^2+x^3+x^4) , {x, 0, 100}], x] (* or *) Flatten[Table[{0, 1, 1, 1, 1}, {30}]] (* Harvey P. Dale, May 15 2011 *)
a[ n_] := Sign@Mod[ n, 5]; (* Michael Somos, May 24 2015 *)
PROG
(PARI) a(n)=!!(n%5) \\ Charles R Greathouse IV, Sep 23 2012
(PARI) {a(n) = n%5>0}; /* Michael Somos, May 24 2015 */
(Scheme) (define (A011558 n) (if (zero? (modulo n 5)) 0 1)) ;; Antti Karttunen, Dec 21 2017
CROSSREFS
Cf. A000035, A011655, A109720 coprimality with 2, 3, 7, respectively.
Sequence in context: A100047 A226162 A080891 * A276398 A204549 A112713
KEYWORD
nonn,mult,easy
EXTENSIONS
More terms from Antti Karttunen, Dec 21 2017
STATUS
approved