OFFSET
0,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
FORMULA
From Harvey P. Dale, Feb 18 2012: (Start)
a(0)=4096, a(1)=11390625, a(2)=308915776, a(3)=2565726409, a(4)=12230590464, a(5)=42180533641, a(6)=117649000000, a(n) = 7*a(n-1) -21*a(n-2) +35*a(n-3) - 35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7).
G.f.: ((x*(x*(x*(x*(x*(117649*x +33188681) +359208382) +642375742) +229267417) +11361953) +4096)/(1-x)^7). (End)
a(n) = A017437(n)^6. - Michel Marcus, Nov 12 2013
E.g.f.: (4096 +11386529*x +143069311*x^2 +278857810*x^3 +157317545*x^4 +30438639*x^5 +1771561*x^6)*exp(x). - G. C. Greubel, Sep 18 2019
MAPLE
MATHEMATICA
(11*Range[0, 20]+4)^6 (* or *) LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {4096, 11390625, 308915776, 2565726409, 12230590464, 42180533641, 117649000000}, 20] (* Harvey P. Dale, Feb 18 2012 *)
PROG
(PARI) vector(20, n, (11*n-7)^6) \\ G. C. Greubel, Sep 18 2019
(Magma) [(11*n+4)^6: n in [0..20]]; // G. C. Greubel, Sep 18 2019
(Sage) [(11*n+4)^6 for n in (0..20)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..20], n-> (11*n+4)^6); # G. C. Greubel, Sep 18 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved