[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A015381
Gaussian binomial coefficient [ n,9 ] for q=-9.
13
1, -348678440, 136773736379522605, -52916360230556551635386480, 20504007291105533368839949866598015, -7943538006665671364765186721016327317109448, 3077495169782617972230910362141435994555138110002155
OFFSET
9,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..9} ((-9)^(n-i+1)-1)/((-9)^i-1). - Vincenzo Librandi, Nov 04 2012
MATHEMATICA
Table[QBinomial[n, 9, -9], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 9, -9) for n in range(9, 15)] # Zerinvary Lajos, May 25 2009
(Magma) r:=9; q:=-9; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n, 9] for q = -2..-13: A015371, A015375, A015376, A015377, A015378, A015379, A015380, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Sequence in context: A316745 A351459 A358705 * A257384 A186628 A032757
KEYWORD
sign,easy
STATUS
approved