[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A015377
Gaussian binomial coefficient [ n,9 ] for q=-5.
13
1, -1627604, 3311368882921, -6416187820400919704, 12551699566292514833249671, -24507195908707737696414306347204, 47868680606322065338648160779243199671, -93492320106912696270274007078334075223284704
OFFSET
9,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
FORMULA
a(n) = Product_{i=1..9} ((-5)^(n-i+1)-1)/((-5)^i-1) (by definition). - Vincenzo Librandi, Nov 04 2012
MATHEMATICA
Table[QBinomial[n, 9, -5], {n, 9, 20}] (* Vincenzo Librandi, Nov 04 2012 *)
PROG
(Sage) [gaussian_binomial(n, 9, -5) for n in range(9, 16)] # Zerinvary Lajos, May 25 2009
(Magma) r:=9; q:=-5; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // Vincenzo Librandi, Nov 04 2012
CROSSREFS
Cf. Gaussian binomial coefficients [n,9] for q=-2..-13: A015371, A015375, A015376, A015378, A015379, A015380, A015381, A015382, A015383, A015384, A015385. - Vincenzo Librandi, Nov 04 2012
Sequence in context: A064117 A173428 A015334 * A296450 A255042 A255035
KEYWORD
sign,easy
STATUS
approved