[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A002845
Number of distinct values taken by 2^2^...^2 (with n 2's and parentheses inserted in all possible ways).
(Formerly M1139 N0435)
24
1, 1, 1, 2, 4, 8, 17, 36, 78, 171, 379, 851, 1928, 4396, 10087, 23273, 53948, 125608, 293543, 688366, 1619087, 3818818, 9029719, 21400706, 50828664, 120963298, 288405081, 688821573, 1647853491, 3948189131, 9473431479
OFFSET
1,4
COMMENTS
a(n) <= A002955(n). - Max Alekseyev, Sep 23 2009
REFERENCES
J. Q. Longyear, personal communication.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. Goebel and R. P. Nederpelt, The number of numerical outcomes of iterated powers, Amer. Math. Monthly, 80 (1971), 1097-1103.
R. K. Guy, Letter to N. J. A. Sloane, June 24 1971: front, back [Annotated scanned copy, with permission]
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis (annotated cached copy, with permission)
Sean A. Irvine, Java program (github).
J. Longyear, T. Trotter, and N. J. A. Sloane, Correspondence.
Jon E. Schoenfield, The 851 values for n=12.
EXAMPLE
From M. F. Hasler, Apr 17 2024: (Start)
The table with explicit lists of values starts as follows:
n | distinct values of 2^...^2 with all possible parenthesizations
-----+---------------------------------------------------------------
1 | 2
2 | 2^2 = 4
3 | (2^2)^2 = 2^(2^2) = 16
4 | (2^2^2)^2 = 2^8 = 256, (2^2)^(2^2) = 2^(2^2^2) = 2^16 (= 65536)
5 | 256^2 = 2^16, (2^16)^2 = 2^32, 2^256, 2^2^16 (~ 2*10^19728)
6 | (2^16)^2 = 2^32, 2^64, 2^512, 2^2^16, 2^2^17, 2^2^32, 2^2^256, 2^2^2^16
7 | 2^64, 2^128, 2^256, 2^1024, 2^2^17, 2^2^18, 2^2^32, 2^2^33, 2^2^64, 2^2^257,
| 2^2^512, 2^2^2^16, 2^2^65537, 2^2^2^17, 2^2^2^32, 2^2^2^256, 2^2^2^2^16
...| ...
(When parentheses are omitted above, we use that ^ is right associative.) (End)
PROG
(PARI) /* Define operators for numbers represented (recursively) as list of positions of bits 1. Illustration using the commands below: T = 3.bits; T.int */
n.bits = vector(hammingweight(n), v, n -= 1 << v= valuation(n, 2); v.bits)
m.int = sum(i=1, #m, 1<<m[i].int) /* Convert back. (Not needed.) */
{POW(m, n)= if(#m==1, [MUL(m[1], n)], my(p=ONE); until(!#n || !#m=MUL(m, m), #n[1] || p=MUL(p, m); n=RSHIFT(n)); p)}\\ binary exponentiation unless only 1 bit set
{MUL(m, n)= my(S=[]); #n && foreach(m, b, S=ADD(S, [ADD(c, b)| c<-n])); S}
{RSHIFT(m, n=ONE)= if(!#m|| !#n|| !(#m[1]|| #m=m[^1]), m, [SUB(b, n)| b<-m, CMP(b, n)>=0])}
{ADD(m, n, a=#m, b=#n)= if(!a, n, !b, m, a=b=1; until(a>#m|| b>#n, if(m[a]==n[b], until(a>=#m|| m[a]!=m[a+1]|| !#m=m[^a], m[a]=ADD(m[a], ONE)); b++, CMP(m[a], n[b])<0, a++, m=concat([m[1..a-1], [n[b]], m[a..#m]]); b++)); b>#n|| m=concat(m, n[b..#n]); m)}
{CMP(m, n, a=#m, b=#n, c=0)= if(!b, a, !a, -1, while(!(c=CMP(m[a], n[b]))&& a--&& b--, ); if(c, c, 1-b))}
{SUB(m, n, a=#n)= if(!a, m, my(b=a=1, c, i); while(a<=#m && b<=#n, if(0>c=CMP(m[a], n[b]), a++, c, i=[c=n[b]]; b++; while(m[a]!=c=ADD(c, ONE), if(b<=#n && c==n[b], b++, i=concat(i, [c]))); m=concat([m[1..a-1], i, m[a+1..#m]]); a += #i, m=m[^a]; b++)); m)}
A2845 = List([[2.bits]]) /* List of values for each n */
{A002845(n)= while(#A2845<n, my(S=[], n=#A2845); for(k=1, n, foreach(A2845[n-k+1], b, S=setunion(S, Set([POW(a, b)| a<-A2845[k]])))); listput(A2845, S)); #A2845[n]}
\\ Unoptimized code, for illustration. Slow for n >= 15. - M. F. Hasler, Apr 28 2024
KEYWORD
nonn,nice,more
EXTENSIONS
a(12)-a(13) corrected and a(14)-a(27) added by Jon E. Schoenfield, Oct 11 2008
a(28)-a(29) computed by Kirill Osenkov, added by Vladimir Reshetnikov, Feb 07 2019
a(30)-a(31) added by Sean A. Irvine, Feb 18 2019
STATUS
approved