[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A001973
Expansion of (1+x^3)/((1-x)*(1-x^2)^2*(1-x^3)).
(Formerly M2441 N0969)
7
1, 1, 3, 5, 8, 12, 18, 24, 33, 43, 55, 69, 86, 104, 126, 150, 177, 207, 241, 277, 318, 362, 410, 462, 519, 579, 645, 715, 790, 870, 956, 1046, 1143, 1245, 1353, 1467, 1588, 1714, 1848, 1988
OFFSET
0,3
COMMENTS
a(1..3)=0; a(n) is the number of partitions of 2*(n+1) with 4 different numbers from the set {1,...,n}; the number of partitions of 2*n + 2 - C and 2*n + 2 + C are equal; example: n=6; 2*n + 2 = 14; a(6)=3; (10,1), (11,1), (12,2), (13,2), (14,3), (15,2), (16,2), (17,1), (18,1). - Paul Weisenhorn, Jun 01 2009. [I believe this comment refers to the sequence 0, 0, 0, 1, 1, 3, 5, ... with offset 1. - N. J. A. Sloane, Mar 30 2023]
REFERENCES
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
M. Jeger, Einfuehrung in die Kombinatorik, Klett, 1975, pages 110ff. [From Paul Weisenhorn, Jun 01 2009]
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) is the coefficient of x^(2*n+2) in the g.f. Product_{s=1..4} (x^s - x^(n+1))/(1-x^s). - Paul Weisenhorn, Jun 01 2009
a(n) = 2*a(n-1) - a(n-3) - a(n-4) + 2*a(n-6) - a(n-7). Vincenzo Librandi, Jun 11 2012
MAPLE
A001973:=(1-z+z**2)/(z+1)/(z**2+z+1)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
with(combstruct):ZL:=[st, {st=Prod(left, right), left=Set(U, card=r+1), right=Set(U, card<r), U=Sequence(Z, card>=2)}, unlabeled]: subs(r=2, stack): seq(count(subs(r=2, ZL), size=m), m=6..45) ; # Zerinvary Lajos, Feb 07 2008
MATHEMATICA
CoefficientList[Series[(1+x^3)/((1-x)*(1-x^2)^2*(1-x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 11 2012 *)
PROG
(PARI) Vec((1+x^3)/((1-x)*(1-x^2)^2*(1-x^3))+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
CROSSREFS
Sequence in context: A265063 A098202 A164653 * A248374 A020745 A232896
KEYWORD
nonn,easy
STATUS
approved