OFFSET
0,3
COMMENTS
Equivalence classes of invertible maps from {0,1}^n to {0,1}^n, under action of (C_2)^n on both domain and range.
REFERENCES
M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 154, problem 12.
C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
FORMULA
A000652: n->2^(-2*n)*( (2^n)! + (2^n-1)^2 * ( (2^(n-1))! )*2^(2^(n-1)));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Feb 23 2000
STATUS
approved