[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A000652
Invertible Boolean functions of n variables.
(Formerly M4315 N1807)
3
1, 1, 6, 924, 81738720000, 256963707943061374889193111552000, 30978254928194376001814792318154658399138184007229852126545533479881553257431040000000
OFFSET
0,3
COMMENTS
Equivalence classes of invertible maps from {0,1}^n to {0,1}^n, under action of (C_2)^n on both domain and range.
REFERENCES
M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 154, problem 12.
C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]
C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.
C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]
FORMULA
A000652: n->2^(-2*n)*( (2^n)! + (2^n-1)^2 * ( (2^(n-1))! )*2^(2^(n-1)));
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vladeta Jovovic, Feb 23 2000
STATUS
approved