OFFSET
1,2
COMMENTS
Also the Bell transform of A038048(n+1) and the inverse Bell transform of A180563(n+1) (adding 1,0,0,.. as column 0). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Named after the Italian mathematician Francesco Flores D'Arcais (1849-1927). - Amiram Eldar, Jun 13 2021
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 159.
F. D'Arcais, Développement en série, Intermédiaire Math., Vol. 20 (1913), pp. 233-234.
LINKS
Seiichi Manyama, Rows n = 1..100, flattened (rows n = 1..20 from Vincenzo Librandi)
Peter Luschny, The Bell transform.
FORMULA
G.f.: Sum_{1<=k<=n} T(n, k)*u^k*t^n/n! = ((1-t)*(1-t^2)*(1-t^3)...)^(-u).
Recurrence for degree n D'Arcais polynomials T(n; u) = Sum_{k=1..n} T(n, k)*u^k is given by T(n; u) = Sum_{k=1..n} (n-1)!/(n-k)!*sigma(k)*u*T(n-k; u), T(0; u) = 1. - Vladeta Jovovic, Oct 11 2002
T(n; u) = n!*Sum_{pi} Product_{i=1..n} binomial(u+k(i)-1, k(i)) where pi runs through all nonnegative solutions of k(1)+2*k(2)+..+n*k(n)=n. - Vladeta Jovovic, Oct 11 2002
E.g.f.: exp(Sum_{n>0} sigma(n)*u*x^n/n), where sigma(n)=A000203(n). - Vladeta Jovovic, Jan 10 2003
T(n, k) = coeff(n!*P(n), x^k), n >= 1 and 1 <= k <= n, with P(n) = (1/n)*Sum_{k=0..n-1} sigma(n-k)*P(k)*x for n >= 1 and P(n=0) = 1. See A036039. - Johannes W. Meijer, Jul 08 2016
T(n, k) = (n!/k!) * Sum_{i_1,i_2,...,i_k > 0 and i_1+i_2+...+i_k=n} Product_{j=1..k} sigma(i_j)/i_j. - Seiichi Manyama, Nov 09 2020.
EXAMPLE
exp(Sum_{n>0} sigma(n)*u*x^n/n) = 1+u*x/1!+(3*u+u^2)*x^2/2!+(8*u+9*u^2+u^3)*x^3/3!+(42*u+59*u^2+18*u^3+u^4)*x^4/4!+...
Triangle starts:
1:
3, 1;
8, 9, 1;
42, 59, 18, 1;
144, 450, 215, 30, 1;
1440, 3394, 2475, 565, 45, 1;
5760, 30912, 28294, 9345, 1225, 63, 1;
75600, 293292, 340116, 147889, 27720, 2338, 84, 1;
...
T(4; u) = 4!*(binomial(u+3,4) + binomial(u+1,2)*binomial(u,1) + binomial(u+1,2) + binomial(u,1)^2 + binomial(u,1)) = 42*u+59*u^2+18*u^3+u^4.
MAPLE
P := proc(n): if n=0 then 1 else P(n):= (1/n)*(add(x(n-k) * P(k), k=0..n-1)) fi; end: with(numtheory): x := proc(n): sigma(n) * x end: Q := proc(n): n!*P(n) end: T := proc(n, k): coeff(Q(n), x, k) end: seq(seq(T(n, k), k=1..n), n=1..10); # Johannes W. Meijer, Jul 08 2016
MATHEMATICA
t[0][u_] = 1; t[n_][u_] := t[n][u] = Sum[(n-1)!/(n-k)!*DivisorSigma[1, k]*u*t[n-k][u], {k, 1, n}]; row[n_] := CoefficientList[ t[n][u], u] // Rest; Table[row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Oct 03 2012, after Vladeta Jovovic *)
PROG
(Sage) # uses[bell_matrix from A264428]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
print(bell_matrix(lambda n: A038048(n+1), 9)) # Peter Luschny, Jan 19 2016
(PARI) row(n)={local(P(n)=if(n, sum(k=0, n-1, sigma(n-k)*x*P(k))/n, 1)); Vecrev(P(n)*n!/x)} \\ T(n, k)=row(n)[k]. - M. F. Hasler, Jul 13 2016
(PARI) a(n) = if(n<1, 0, (n-1)!*sigma(n));
T(n, k) = if(k==0, 0^n, sum(j=0, n-k+1, binomial(n-1, j-1)*a(j)*T(n-j, k-1))) \\ Seiichi Manyama, Nov 08 2020 after Peter Luschny
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Dec 28 2001
STATUS
approved