[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A005672
a(n) = Fibonacci(n+1) - 2^floor(n/2).
(Formerly M3253)
24
0, 0, 0, 1, 1, 4, 5, 13, 18, 39, 57, 112, 169, 313, 482, 859, 1341, 2328, 3669, 6253, 9922, 16687, 26609, 44320, 70929, 117297, 188226, 309619, 497845, 815656, 1313501, 2145541
OFFSET
0,6
REFERENCES
R. K. Guy, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) = Fibonacci(n-1) + 2*a(n-2), a(-1)=0, a(1)=0, a(2)=1. - Zerinvary Lajos, Mar 17 2008
MAPLE
A005672:=z**3/(z**2+z-1)/(-1+2*z**2); # conjectured by Simon Plouffe in his 1992 dissertation
with (combinat):a[ -1]:=0:a[1]:=0:a[2]:=1:for n from 2 to 50 do a[n]:=fibonacci(n-1)+2*a[n-2] od: seq(a[n-1], n=0..31); # Zerinvary Lajos, Mar 17 2008
CROSSREFS
Gives diagonal sums of triangle A054143.
Sequence in context: A234254 A258281 A094029 * A147001 A247325 A140683
KEYWORD
nonn,easy
STATUS
approved