Abstract
We define tissue P systems with costs assigning execution costs to the synapses that are used to transport the objects between cells. We use the Priced-Timed Maude rewriting engine to provide an implementation of tissue P systems with costs. The implementation allows us to analyze and verify some behavioural aspects of tissue P systems with costs. We illustrate an application of these tissue P systems with costs by providing a solution to the Travelling Salesman Problem.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
The implementation is available at
https://profs.info.uaic.ro/~bogdan.aman/CostTissuePS/costPS.ptm.
References
Agrigoroaiei, O., & Ciobanu, G. (2009). Rewriting logic specification of membrane systems with promoters and inhibitors. Electronic Notes in Theoretical Computer Science, 238, 5–22. https://doi.org/10.1016/j.entcs.2009.05.010.
Aman, B., & Ciobanu, G. (2009). Turing completeness using three mobile membranes. Lecture Notes in Computer Science, 5715, 42–55. https://doi.org/10.1007/978-3-642-03745-0_12.
Aman, B., & Ciobanu, G. (2009). Simple, enhanced and mutual mobile membranes. Lecture Notes in Computer Science, 5750, 26–44. https://doi.org/10.1007/978-3-642-04186-0_2.
Aman, B., & Ciobanu, G. (2011). Time delays in Membrane systems and Petri nets. Electronic Proceeding in Theoretical Computer Science, 57, 47–60. https://doi.org/10.4204/EPTCS.57.4.
Aman, B., Ciobanu, G. (2016). Verifying P Systems with Costs by Using Priced-Timed Maude. Proceedings 14th Brainstorming Week on Membrane Computing (BWMC), Sevilla.
Aman, B., & Ciobanu, G. (2020). Mobile Membranes. IEEE. Access, 8, 147439–147450. https://doi.org/10.1109/ACCESS.2020.3011803.
Applegate, D. L., Bixby, R. E., Chvatal, V., & Cook, W. J. (2006). The Travelling Salesman Problem. A Computational Study: Princeton University Press. https://doi.org/10.1007/978-3-642-03741-2_31.
Bendiksen, L., & Ölveczky, P. C. (2009). The Priced-Timed Maude tool. Lecture Notes in Computer Science, 5728, 443–448. https://doi.org/10.1007/978-3-642-03741-2_31.
Bouhoula, A., Jouannaud, J.-P., & Meseguer, J. (2000). Specification and proof in membership equational logic. Theoretical Computer Science, 236, 35–132. https://doi.org/10.1016/S0304-3975(99)00206-6.
Ciobanu, G. (2010). Semantics of P systems. In Gh. Păun, G. Rozenberg, & A. Salomaa (Eds.), The Oxford Handbook of Membrane Computing (pp. 413–436). Oxford: Oxford University Press.
Ciobanu, G., Marcus, S., & Păun, Gh. (2009). New strategies of using the rules of a P system in a maximal way: power and complexity. Romanian Journal of Information Science and Technology, 12, 157–173.
Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., & Quesada, J. F. (2002). Maude: specification and programming in rewriting logic. Theoretical Computer Science, 285, 187–243. https://doi.org/10.1016/S0304-3975(01)00359-0.
Cook, W. J. (2012). In Pursuit of the Travelling Salesman: Mathematics at the Limits of Computation. Princeton University Press.
Cooper, J., & Nicolescu, R. (2019). The Hamiltonian cycle and travelling salesman problems in cP systems. Fundamenta Informaticae, 164(2–3), 157–180. https://doi.org/10.3233/FI-2019-1760.
Dantzig, R., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale travelling salesman problem. Operations Research, 2, 393–410.
He, J., & Zhang, K. (2015). A hybrid distribution algorithm based on membrane computing for solving the multiobjective multiple traveling salesman problem. Fundamenta Informaticae, 136, 199–208. https://doi.org/10.3233/FI-2015-1151.
Ionescu, M., Păun, Gh., & Yokomori, T. (2006). Spiking Neural P Systems. Fundamenta Informaticae, 71, 279–308.
Karp, R. M. (1972). Reducibility Among Combinatorial Problems. Complexity of Computer Computations, Plenum,. https://doi.org/10.1007/978-3-540-68279-0_8.
Leporati, A., Zandron, C., & Mauri, G. (2004). Simulating the Fredkin Gate with energy-based P systems. Journal of Universal Computer Science, 10, 600–619. https://doi.org/10.3217/jucs-010-05-0600.
Martín-Vide, C., Păun, Gh., Pazos, J., & Rodríguez-Patón, A. (2003). Tissue P Systems. Theoretical Computer Science, 296, 295–326. https://doi.org/10.1016/S0304-3975(02)00659-X.
Meseguer, J. (1992). Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science, 96, 73–155. https://doi.org/10.1016/0304-3975(92)90182-F.
R. Milner. Operational and Algebraic Semantics of Concurrent Processes. Handbook of Theoretical Computer Science B, 1201–1242, Elsevier (1990). https://doi.org/10.1016/b978-0-444-88074-1.50024-x.
Papadimitriou, C. H. (1977). The Euclidean travelling salesman problem is NP-complete. Theoretical Computer Science, 4, 237–244. https://doi.org/10.1016/0304-3975(77)90012-3.
Păun, Gh. (2002). Membrane Computing: An Introduction. Berlin: Springer. https://doi.org/10.1007/978-3-642-56196-2.
Păun, Gh., Rozenberg, G., & Salomaa, A. (Eds.). (2010). The Oxford Handbook of Membrane Computing. Oxford University Press.
Song, B., Hu, Y., Adorna, H. N., & Xu, F. (2018). A quick survey of tissue-like P systems. Romanian Journal of Information Science and Technology, 21, 310–321.
Song, X., & Wang, J. (2015). An approximate algorithm combining P systems and active evolutionary algorithms for traveling salesman problems. International Journal of Computers, Communications & Control, 10, 89–99.
Zhang, G., Cheng, J., & Gheorghe, M. (2011). A Membrane-inspired approximate algorithm for travelling salesman problems. Romanian Journal of Information Science and Technology, 14, 3–19.
Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spiking neural P system for approximately solving combinatorial optimization problems. International Journal of Neural Systems, 24(5), 1440006. https://doi.org/10.1142/S0129065714400061.
Zhang, H., Xiang, L., & Liu, X. (2018). A SN P system for travelling salesman problem. Lecture Notes in Computer Science, 11354, 339–346. https://doi.org/10.1007/978-3-030-15127-0_33.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare they have no financial interests and no conflicts of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was presented at the Int’l Conference on Membrane Computing (ICMC20).
Rights and permissions
About this article
Cite this article
Aman, B., Ciobanu, G. Travelling salesman problem in tissue P systems with costs. J Membr Comput 3, 97–104 (2021). https://doi.org/10.1007/s41965-021-00077-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s41965-021-00077-z