Abstract
In this paper, the solvability of Darboux problems for nonlinear fractional partial integro-differential equations with uncertainty under Caputo gH-fractional differentiability is studied in the infinity domain J ∞ = [0,∞) × [0,∞). New concepts of Hyers-Ulam stability and Hyers-Ulam-Rassias stability for these problems are also investigated through the equivalent integral forms. A computational example is presented to demonstrate our main results.
Similar content being viewed by others
References
Abbas, S., Benchohra, M., N’Guérékata, G. M.: Topics in Fractional Differential Equations. Springer, New York (2012)
Abbas, S., Benchohra, M., Petrusel, A.: Ulam stability for partial fractional differential inclusions via Picard operators theory. Electron. J. Qual. Theory Differ. Equ. 51, 1–13 (2014)
Allahviranloo, T., Gouyandeh, Z., Armand, A.: Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J. Intell. Fuzzy Syst. 26, 1481–1490 (2014)
Allahviranloo, T., Salahshour, S., Abbasbandy, S.: Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 16, 297–302 (2012)
Agarwal, R. P., Lakshmikantham, V., Neito, J. J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 72, 2859–2862 (2010)
Arshad, S., Lupulescu, V.: On the fractional differential equations with uncertainty. Nonlinear Anal. 74, 3685–3693 (2011)
Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, 119–141 (2013)
Huang, J., Li, Y.: Hyers-Ulam stability of linear functional differential equations. J. Math. Anal. Appl. 426, 1192–1200 (2015)
Hoa, N. V.: Fuzzy fractional functional differential equations under Caputo gH-differentiability. Commun. Nonlinear Sci. Numer. Simul. 22, 1134–1157 (2015)
Hyers, D. H.: On the stability of linear functional equations. Proc. Natl. Acad. Sci. USA. 27, 222–224 (1941)
Hukuhara, M.: Integration des Applications Measurables dont la Valuer est un Compact Convexe. Funkcialaj, Ekavacioy 10, 205–223 (1967)
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)
Long, H.V., Nieto, J.J., Son, N.T.S.: New approach for studying nonlocal problems related to differential systems and partial differential equations in generalized fuzzy metric spaces. Fuzzy Sets Syst. doi:10.1016/j.fss.2016.11.008
Long, H. V., Son, N. T. K., Tam, H. T. T.: The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability. Fuzzy Sets Syst. 309, 35–63 (2017)
Long, H. V., Son, N. T. K., Tam, H. T. T.: Global existence of solutions to fuzzy partial hyperbolic functional differential equations with generalized Hukuhara derivatives. J. Intell. Fuzzy Syst. 29, 939–954 (2015)
Long, H. V., Son, N. T. K., Tam, H. T. T., Cuong, B. C.: On the existence of fuzzy solutions for partial hyperbolic functional differential equations. Int. J. Comput. Intell. Syst. 7, 1159–1173 (2014)
Long, H. V., Son, N. T. K., Ha, N. T. M., Son, L. H.: The existence and uniqueness of fuzzy solutions for hyperbolic partial differential equations. Fuzzy Optim. Decis. Making 13, 435–462 (2014)
Mazandarani, M., Kamyad, A. V.: Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun. Nonlinear Sci. Numer. Simul. 18, 12–21 (2013)
Mazandarani, M., Najariyan, M.: Type-2 fuzzy fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 19, 2354–2372 (2014)
Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)
Rassias, T. M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)
Rezaei, H., Jung, S. M., Rassias, T. M.: Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl. 403, 244–251 (2013)
Obloza, M.: Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 13, 259–270 (1993)
Petru, T. P., Petrusel, A., Yao, J. C.: Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiwan. J. Math. 5, 2195–2212 (2011)
Shen, Y., Wang, F.: A fixed point approach to the Ulam stability of fuzzy differential equations under generalized differentiability. J. Intell. Fuzzy Syst. 30, 3253–3260 (2016)
Shen, Y.: On the Ulam stability of first order linear fuzzy differential equations under generalized differentiability. Fuzzy Sets Syst. 280, 27–57 (2015)
Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 71, 1311–1328 (2009)
Torrejón, R., Yong, J.: On a quasilinear wave equation with memory. Nonlinear Anal. 16, 61–78 (1991)
Ulam, S. M.: Problems in Modern Mathematics. Wiley, New York (1960)
Wang, C., Xu, T. Z.: Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives. Appl. Math. 60, 383–393 (2015)
Acknowledgments
This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2015.08.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Long, H.V., Kim Son, N.T., Thanh Tam, H.T. et al. Ulam Stability for Fractional Partial Integro-Differential Equation with Uncertainty. Acta Math Vietnam 42, 675–700 (2017). https://doi.org/10.1007/s40306-017-0207-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40306-017-0207-2