[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Ulam Stability for Fractional Partial Integro-Differential Equation with Uncertainty

  • Published:
Acta Mathematica Vietnamica Aims and scope Submit manuscript

Abstract

In this paper, the solvability of Darboux problems for nonlinear fractional partial integro-differential equations with uncertainty under Caputo gH-fractional differentiability is studied in the infinity domain J = [0,) × [0,). New concepts of Hyers-Ulam stability and Hyers-Ulam-Rassias stability for these problems are also investigated through the equivalent integral forms. A computational example is presented to demonstrate our main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., N’Guérékata, G. M.: Topics in Fractional Differential Equations. Springer, New York (2012)

    Book  MATH  Google Scholar 

  2. Abbas, S., Benchohra, M., Petrusel, A.: Ulam stability for partial fractional differential inclusions via Picard operators theory. Electron. J. Qual. Theory Differ. Equ. 51, 1–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allahviranloo, T., Gouyandeh, Z., Armand, A.: Fuzzy fractional differential equations under generalized fuzzy Caputo derivative. J. Intell. Fuzzy Syst. 26, 1481–1490 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Allahviranloo, T., Salahshour, S., Abbasbandy, S.: Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 16, 297–302 (2012)

    Article  MATH  Google Scholar 

  5. Agarwal, R. P., Lakshmikantham, V., Neito, J. J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. 72, 2859–2862 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arshad, S., Lupulescu, V.: On the fractional differential equations with uncertainty. Nonlinear Anal. 74, 3685–3693 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bede, B., Stefanini, L.: Generalized differentiability of fuzzy-valued functions. Fuzzy Sets Syst. 230, 119–141 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, J., Li, Y.: Hyers-Ulam stability of linear functional differential equations. J. Math. Anal. Appl. 426, 1192–1200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hoa, N. V.: Fuzzy fractional functional differential equations under Caputo gH-differentiability. Commun. Nonlinear Sci. Numer. Simul. 22, 1134–1157 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hyers, D. H.: On the stability of linear functional equations. Proc. Natl. Acad. Sci. USA. 27, 222–224 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hukuhara, M.: Integration des Applications Measurables dont la Valuer est un Compact Convexe. Funkcialaj, Ekavacioy 10, 205–223 (1967)

    MathSciNet  MATH  Google Scholar 

  12. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations. Elsevier Science B.V, Amsterdam (2006)

    MATH  Google Scholar 

  13. Long, H.V., Nieto, J.J., Son, N.T.S.: New approach for studying nonlocal problems related to differential systems and partial differential equations in generalized fuzzy metric spaces. Fuzzy Sets Syst. doi:10.1016/j.fss.2016.11.008

  14. Long, H. V., Son, N. T. K., Tam, H. T. T.: The solvability of fuzzy fractional partial differential equations under Caputo gH-differentiability. Fuzzy Sets Syst. 309, 35–63 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Long, H. V., Son, N. T. K., Tam, H. T. T.: Global existence of solutions to fuzzy partial hyperbolic functional differential equations with generalized Hukuhara derivatives. J. Intell. Fuzzy Syst. 29, 939–954 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Long, H. V., Son, N. T. K., Tam, H. T. T., Cuong, B. C.: On the existence of fuzzy solutions for partial hyperbolic functional differential equations. Int. J. Comput. Intell. Syst. 7, 1159–1173 (2014)

    Article  Google Scholar 

  17. Long, H. V., Son, N. T. K., Ha, N. T. M., Son, L. H.: The existence and uniqueness of fuzzy solutions for hyperbolic partial differential equations. Fuzzy Optim. Decis. Making 13, 435–462 (2014)

    Article  MathSciNet  Google Scholar 

  18. Mazandarani, M., Kamyad, A. V.: Modified fractional Euler method for solving fuzzy fractional initial value problem. Commun. Nonlinear Sci. Numer. Simul. 18, 12–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mazandarani, M., Najariyan, M.: Type-2 fuzzy fractional derivatives. Commun. Nonlinear Sci. Numer. Simul. 19, 2354–2372 (2014)

    Article  MathSciNet  Google Scholar 

  20. Miller, K. S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)

    MATH  Google Scholar 

  21. Rassias, T. M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rezaei, H., Jung, S. M., Rassias, T. M.: Laplace transform and Hyers-Ulam stability of linear differential equations. J. Math. Anal. Appl. 403, 244–251 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Obloza, M.: Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 13, 259–270 (1993)

    MathSciNet  MATH  Google Scholar 

  24. Petru, T. P., Petrusel, A., Yao, J. C.: Ulam-Hyers stability for operatorial equations and inclusions via nonself operators. Taiwan. J. Math. 5, 2195–2212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shen, Y., Wang, F.: A fixed point approach to the Ulam stability of fuzzy differential equations under generalized differentiability. J. Intell. Fuzzy Syst. 30, 3253–3260 (2016)

    Article  MATH  Google Scholar 

  26. Shen, Y.: On the Ulam stability of first order linear fuzzy differential equations under generalized differentiability. Fuzzy Sets Syst. 280, 27–57 (2015)

    Article  MathSciNet  Google Scholar 

  27. Stefanini, L., Bede, B.: Generalized Hukuhara differentiability of interval-valued functions and interval differential equations. Nonlinear Anal. 71, 1311–1328 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Torrejón, R., Yong, J.: On a quasilinear wave equation with memory. Nonlinear Anal. 16, 61–78 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ulam, S. M.: Problems in Modern Mathematics. Wiley, New York (1960)

    MATH  Google Scholar 

  30. Wang, C., Xu, T. Z.: Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives. Appl. Math. 60, 383–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2015.08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang Viet Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, H.V., Kim Son, N.T., Thanh Tam, H.T. et al. Ulam Stability for Fractional Partial Integro-Differential Equation with Uncertainty. Acta Math Vietnam 42, 675–700 (2017). https://doi.org/10.1007/s40306-017-0207-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40306-017-0207-2

Keywords

Mathematics Subject Classification (2010)

Navigation