[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Synthesis, characterization and efficacy of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity

  • Research article
  • Published:
DARU Journal of Pharmaceutical Sciences Aims and scope Submit manuscript

Abstract

Background

Mitochondrial impairments due to free radicals are implicated in a wide range of neurotoxicological alterations. Curcumin, an active ingredient of turmeric has shown protective efficacy against oxidative damage due to its strong antioxidant potential, but its efficiency is restricted due to low bioavailability in the mitochondria. In view of this, we have synthesized mitochondria-targeted curcumin (MTC) with an aim to investigate its efficacy against rotenone-induced oxidative damage in mice and isolated mitochondria.

Methods

MTC was synthesized by attaching the triphenylphosphonium cation (TPP) as a cationic carrier to the curcumin to assess its protective efficacy in rotenone-induced in-vitro and in-vivo toxicity in mice.

Results

In-vitro treatment of rotenone in isolated mitochondria caused a significant increase in lipid peroxidation (2.74 fold, 3.62 fold), protein carbonyl contents (2.62 fold, 1.81 fold), and decrease in levels of reduced glutathione (2.02 fold, 1.70 fold) as compared to control. Pre-treatment of curcumin and MTC along with rotenone in the isolated mitochondria significantly reduce the oxidative stress as compared to those treated with rotenone alone. Rotenone treatment in mice significantly increased lipid peroxidation (2.02 fold) and decreased the levels of reduced glutathione (2.99 fold), superoxide dismutase (2.09 fold) and catalase (3.60 fold) in the liver as compared to controls. Co-treatment of curcumin and MTC along with rotenone significantly reduced lipid peroxidation (1.26 fold, 1.76 fold) and increased the levels of reduced glutathione (1.60 fold, 2.43 fold), superoxide dismutase (1.45 fold, 1.99 fold) and catalase (2.32 fold, 2.90 fold) as compared to those treated with rotenone alone.

Conclusion

The results of the present study indicate that the protective efficacy of MTC against rotenone-induced oxidative damage was more promising than curcumin in both in-vitro and in-vivo system which indicates the enhanced bioavailability of MTC.

Effect of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wanders RJ, Ruiter JP, IJLst L, Waterham HR, Houten SM. The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results. J Inherit Metab. 2010;33:479–94.

    CAS  Google Scholar 

  2. Contreras L, Drago I, Zampese E, Pozzan T. Mitochondria: the calcium connection. Biochim Biophys Acta. 2010;1797:607–18.

    CAS  PubMed  Google Scholar 

  3. Ahn CS, Metallo CM. Mitochondria as biosynthetic factories for cancer proliferation. Cancer Metab. 2015;3(1):1.

  4. Jimenez JJ, Bernal JL, Nozal MJ. Determination of rotenone residues in raw honey by solid-phase extraction and high-performance liquid chromatography. J Chromatogr. A. 2000;A871:67–73.

    Google Scholar 

  5. Talpade DJ, Greene JG, Higgins DS Jr, Greenamyre JT. In-vivo labeling of mitochondrial complex I (NADH: ubiquinoneoxidoreductase) in rat brain using [(3)H]dihydrorotenone. J Neurochem. 200(75):2611–21.

    Google Scholar 

  6. Yong R, Liu RW, Jiang H, Jiang Q, Feng J. Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J Biol Chem. 2005;280:34105–12.

    Google Scholar 

  7. Nehru B, Verma R, Khanna P, Sharma SK. Behavioral alterations in rotenone model of Parkinson’s disease: attenuation by co-treatment of centrophenoxine. Brain Res. 2008;1201:122–7.

    CAS  PubMed  Google Scholar 

  8. Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD. Mitochondrial proton and electron leaks. Essays Biochem. 2010;47:53–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondria electron transport chain. J Neurochem. 2002;80:780–7.

    CAS  PubMed  Google Scholar 

  10. Im AR, Kim YH, Uddin MR, Chae S, Lee HW, Kim YH, et al. Betaine protects against rotenone-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol. 2013;33(5):625–35.

    CAS  PubMed  Google Scholar 

  11. Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL. The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats. Neuroscience. 2007;146(2):741–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Newhouse K, Hsuan SL, Chang SH, Cai B, Wang Y, Xia Z. Rotenone-induced apoptosis is mediated by p38 and jnk map kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci. 2004;79:137–46.

    CAS  PubMed  Google Scholar 

  13. Xu Y, Liu C, Chen S, Ye Y, Guo M, Ren Q, et al. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in-vitro models of Parkinson's disease. Cell Signal. 2014;26(8):1680–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhou Q, Liu C, Liu W, Zhang H, Zhang R, Liu J, et al. Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol Sci. 2015;143(1):81–96.

    CAS  PubMed  Google Scholar 

  15. Yadav RS, Sankhwar ML, Shukla RK, Chandra R, Pant AB, Islam F, et al. Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicol Appl Pharmacol. 2009;240:367–76.

    CAS  PubMed  Google Scholar 

  16. Yadav RS, Chandravanshi LP, Shukla RK, Sankhwar ML, Ansari RW, Shukla PK, et al. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats. Neurotoxicology. 2011;32:760–8.

    CAS  PubMed  Google Scholar 

  17. Srivastava P, Yadav RS, Chandravanshi LP, Shukla RK, Dhuriya YK, Chauhan LK, et al. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats. Toxicol Appl Pharmacol. 2014;15:428–40.

    Google Scholar 

  18. Lin J, Shih CA. Inhibitory effect of curcumin on xanthine dehydrogenase/oxidase induced by phorbol-12-myristate-13-acetate in NIH3T3 cells. Carcinogenesis. 1994;15:1717–21.

    CAS  PubMed  Google Scholar 

  19. Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A, et al. Structural and functional aspects. Biochimica. Et. Biophysica.Acta. 2006;1757:1406–20.

    CAS  Google Scholar 

  20. Trnka J, Elkalaf M, Anděl M. Lipophilic triphenylphosphoniumcations inhibit mitochondrial electron transport chain and induce mitochondrial proton leak. PLoS One. 2015;10(4).

    PubMed  PubMed Central  Google Scholar 

  21. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria. J Biol Chem. 2003;278:36027–31.

    CAS  PubMed  Google Scholar 

  22. Murphy MP. Targeting lipophilic cations to mitochondria. Biochim Biophys Acta. 2008;1777:1028–31.

    CAS  PubMed  Google Scholar 

  23. Krishna Mohan PR, Sreelakshmi G, Muraleedharan CV, Joseph R. Water soluble complexes of curcumin with cyclodextrins: characterization by FT-Raman spectroscopy. Vib Spectrosc. 2012;62:77–84.

    Google Scholar 

  24. Reddy CA, Somepalli V, Golakoti T, Kanugula AK, Karnewar S, Rajendiran K, et al. Mitochondrial-targeted curcuminoids: a strategy to enhance bioavailability and anticancer efficacy of curcumin. PLoS One. 2014;9(3):e89351.

    PubMed  PubMed Central  Google Scholar 

  25. Jat D, Parihar P, Kothari SC, Parihar MS. Curcumin reduces oxidative damage by increasing reduced glutathione and preventing membrane permeability transition in isolated brain mitochondria. Cell Mol Biol. 2013;59:OL1899–905.

    PubMed  Google Scholar 

  26. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    CAS  PubMed  Google Scholar 

  27. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464–78.

    CAS  PubMed  Google Scholar 

  28. Hasan M, Haider SS. Acetyl homocysteinthiolactone protect against some neurotoxic effects of thallium. Neurotoxicology. 1989;10:257–62.

    CAS  PubMed  Google Scholar 

  29. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–75.

    CAS  Google Scholar 

  30. Reddy AC, Lokesh BR. Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem Toxicol. 1994;32:279–83.

    CAS  PubMed  Google Scholar 

  31. Zhu YG, Chen XC, Chen ZZ, Zeng YQ, Sh GB, Su YH, et al. Curcumin protects mitochondria from oxidative damage and attenuates apoptosis in cortical neurons. Acta Pharmacol Sin. 2004;25:1606–12.

    CAS  PubMed  Google Scholar 

  32. Smith R, Porteous CM, Gane AM, Michael MP. Delivery of bioactive molecules to mitochondria in-vivo. Proc Natl Acad Sci U S A. 2003;100(9):5407–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Azzone GF, Pietrobon D, Zoratti M. Determination of the proton electrochemical gradient across biological membranes. Curr Top Bioenerg. 1984;13:1–77.

    CAS  Google Scholar 

  34. Brand MD, Brown GC, Cooper CE. Measurement of mitochondrial proton motive force. IRL Press. Oxford. UK . 1995; 4: 39–62.

  35. Hu Q, Ren J, Li G, Wu J, Wu X, Wang G, et al. The mitochondrially targeted antioxidant MitoQ protects the intestinal barrier by ameliorating mitochondrial DNA damage via the Nrf2/ARE signaling pathway. Cell Death Dis. 2018;9(3):403.

    PubMed  PubMed Central  Google Scholar 

  36. Hughes G, Murphy MP, Ledgerwood EC. Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor NF-kappaB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants. Biochem J. 2005;389:83–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cheng G, Zielonka J, McAllister D, Hardy M, Ouari O, Joseph J, et al. Anti proliferative effects of mitochondria-targeted cationic antioxidants and analogs: role of mitochondrial bioenergetics and energy-sensing mechanism. Cancer Lett. 2015;365(1):96–106.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Methner C, Chouchani ET, Buonincontri G, Pell VR, Sawiak SJ, Murphy MP, et al. Mitochondria selective S-nitrosation by mitochondria-targeted S-nitrosothiol protects against post-infarct heart failure in mouse hearts. Eur J Heart Fail. 2014;16:712–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chinta SJ, Kumar M, Hsu M, Rajagopalan S, Kaur D, Rane A. Inducible alterations of glutathione levels in adult dopaminergic midbrain neurons result in nigrostriatal degeneration. J Neurosci. 2007;27:13997–4006.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Terzia A, Irazb M, Sahinc S, Ilhand A, Idize N, Fadilliogluf E. Protective effects of erdosteine on rotenone-induced oxidant injury in liver tissue. Toxicol Ind Health. 2004;20:141–7.

    Google Scholar 

  41. Khurana N, Gajbhiye A. Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson’s disease. NeuroToxicology. 2013;39:57–64.

    CAS  PubMed  Google Scholar 

  42. Jiang XW, Qiao L, Feng XX, Liu L, Wei QW, Wang XW, et al. Rotenone induces nephrotoxicity in rats: oxidative damage and apoptosis. Toxicol Mech Methods. 2017;27(7):528–36.

    CAS  PubMed  Google Scholar 

  43. Yadav RS, Shukla RK, Sankhwar ML, Patel DK, Ansari RW, Pant AB, et al. Neuroprotective effect of curcumin in arsenic-induced neurotoxicity in rats. NeuroToxicology. 2010;31:533–9.

    CAS  PubMed  Google Scholar 

  44. Parihar P, Jat D, Ghafourifar P, Parihar MS. Effciency of mitochondrially targeted gallic acid in reducing brain mitochondrial oxidative damage. Cell Mol Biol. 2014;60(2):35–41.

    CAS  PubMed  Google Scholar 

  45. Kale A, Pişkin Ö, Baş Y, Aydın BG, Can M, Elmas Ö, et al. Neuroprotective effects of quercetin on radiation-induced brain injury in rats. J Radiat Res. 2018;59(4):404–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kulkarni S, Dhir A, Akula KK. Potentials of curcumin as an antidepressant. Sci World J. 2009;9:1233–41.

    CAS  Google Scholar 

  47. Dkhar P, Sharma R. Effect of dimethylsulphoxide and curcumin on protein carbonyls and reactive oxygen species of cerebral hemispheres of mice as a function of age. Int J Dev Neurosci. 2010;28:351–7.

    CAS  PubMed  Google Scholar 

  48. Raza H, John A, Brown EM, Benedict S, Kambal A. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells. Toxicol Appl Pharmacol. 2008;226:161–8.

    CAS  PubMed  Google Scholar 

  49. Nabavi SF, Moghaddam AH, Eslami S, Nabavi SM. Protective effects of curcumin against sodium fluoride-induced toxicity in rat kidneys. Biol Trace Elem Res. 2012;145:369–74.

    CAS  PubMed  Google Scholar 

  50. Garcia-Nino WR, Tapia E, Zazueta C, Zatarain-Barron ZL, Hernandez-Pando R, Vega-Garcia CC, et al. Curcumin pretreatment prevents potassium dichromate-induced hepatotoxicity, oxidative stress, decreased respiratory complex I activity and membrane permeability transition pore opening. Evid Based Complement Alternat Med. 2013;2013:42469243.

    Google Scholar 

  51. Hoek JB, Cahill A, Pastorino JG. Alcohol and mitochondria: a dysfunctional relationship. Gastroenterology. 2002;122:2049–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Meister A, Anderson ME. Glutathione. Annu Rev Biochem. 1983;52:711–60.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the CIL, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar (MP), India for providing instrumentation facilities. Financial support from UGC New-Delhi, India is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepali Jat.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, W., Kori, R.K., Thakre, K. et al. Synthesis, characterization and efficacy of mitochondrial targeted delivery of TPP-curcumin in rotenone-induced toxicity. DARU J Pharm Sci 27, 557–570 (2019). https://doi.org/10.1007/s40199-019-00283-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40199-019-00283-2

Keywords

Navigation