[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

MHD micropolar fluid flow with thermal radiation and thermal diffusion in a rotating frame

  • Published:
Bulletin of the Malaysian Mathematical Sciences Society Aims and scope Submit manuscript

Abstract

This work is devoted to investigate the influences of thermal radiation and thermal diffusion on hydromagnetic free convection heat and mass transfer flow of a micropolar fluid with constant wall heat and mass transfer in a porous medium bounded by a semi-infinite porous plate in a rotating frame of reference. The dimensionless governing equations for this investigation are solved analytically using small perturbation approximation. With the help of graphs, the effects of the various important parameters entering into the problem on the velocity, microrotation, temperature, and concentration fields within the boundary layer are separately discussed. Finally the effects of the pertinent parameters on the skin friction coefficient, couple stress coefficient, Nusselt number, and Sherwood number at the wall are presented numerically in tabular form. In addition, the results obtained show that these parameters have significant influence on the flow, heat and mass transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ariman, T., Turk, M.A., Sylvester, N.D.: Microcontinuum fluid mechanics -a review. Int. J. Engg. Sci. 11, 905–930 (1973)

    Article  MATH  Google Scholar 

  2. Ariman, T., Turk, M.A., Sylvester, N.D.: Applications of microcontinuum fluid mechanics-a review. Int. J. Eng. Sci. 12, 273–293 (1974)

    Article  MATH  Google Scholar 

  3. Bakr, A.A.: Effects of chemical reaction on MHD free convection and mass transfer flow of a micropolar fluid with oscillatory plate velocity and constant heat source in a rotating frame of reference. Commun. Nonlinear Sci. Numer. Simul. 16, 698–710 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bachok, N., Ishak, A., Nazar, R.: Flow and heat transfer over an unsteady stretching sheet in a micropolar fluid. Meccanica 46, 935–942 (2011)

    Article  MATH  Google Scholar 

  5. Bhargava, R., Takhar, H.S.: Numerical study of heat transfer characteristics of the micropolar boundary layer near a stagnation point on a moving wall. Int. J. Eng. Sci. 38, 383–394 (2000)

    Article  MATH  Google Scholar 

  6. Chamkha, A., Mohamed, R.A., Ahmed, S.E.: Unsteady MHD natural convection from a heated vertical porous plate in a micropolar fluid with Joule heating, chemical reaction and thermal radiaton. Meccanica 46, 399–411 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheng, C.Y.: Soret and Dufour effects on free convection boundary layer flow over a vertical cylinder in a saturated porous medium. Int. Commun. Heat Mass Transf. 37, 796–800 (2010)

    Article  Google Scholar 

  8. Cheng, C.Y.: Soret and Dufour effects on natural convection boundary layer flow over a vertical cone in a porous medium with constant wall heat and mass fluxes. Int. Commun. Heat Mass Transf. 38, 44–48 (2011)

    Article  Google Scholar 

  9. Cheng, C.Y.: Soret and Dufour effects on free convection boundary layers of non-Newtonian power law fluids with yield stress in porous media over a vertical plate with variable wall heat and mass fluxes. Int. Commun. Heat Mass Transf. 38, 615–619 (2011)

    Article  Google Scholar 

  10. Cogley, A.C., Vincenty, W.E., Gilles, S.E.: Differential approximation for radiation in a non-gray gas near equilibrium. AIAA J. 6, 551–553 (1968)

    Article  Google Scholar 

  11. Das, K., Jana, S.: Heat and mass transfer effects on unsteady MHD free convection flow near a moving vertical plate in porous medium. Bull. Soc. Math. Banja Luka. 17, 15–32 (2010)

    MATH  MathSciNet  Google Scholar 

  12. Das, K.: Effects of heat and mass transfer on MHD free convection flow near a moving vertical plate of a radiating and chemically reacting fluid, Jour. Siberian Federal Univ. Maths. Phys. 4, 18–31 (2011)

    Google Scholar 

  13. Das, K.: Effect of chemical reaction and thermal radiation on heat and mass transfer flow of MHD micropolar fluid in a rotating frame of reference. Int. J. Heat Mass Transf. 54, 3505–3513 (2011)

    Article  MATH  Google Scholar 

  14. Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1964)

    MathSciNet  Google Scholar 

  15. Ganapathy, R.: A note on oscillatory Couette flow in a rotating system. ASME J. Appl. Mech. 61, 208–209 (1994)

    Article  MATH  Google Scholar 

  16. Haque, Md.Z., Mahmud Alam, Md.M., Ferdows, M., Postelnicu, A.: Micropolar fluid behaviors on steady MHD free convection flow and mass transfer with constant heat and mass fluxes, joule heating and viscous dissipation. J. King Saud Univ. Eng. Sci. 24(2), 71–84 (2012)

  17. Hossain, M.A., Takhar, H.S.: Radiation effect on mixed convection along a vertical plate with uniform surface temperature. Heat Mass Transf. 31, 243–248 (1996)

    Article  Google Scholar 

  18. Ibrahim, F.S., Elaiw, A.M., Bakr, A.A.: Influence of viscous dissipation and radiation on unsteady MHD mixed convection flow of micropolar fluids. Appl. Math. Inf. Sci. 2, 143–162 (2008)

    MATH  MathSciNet  Google Scholar 

  19. Ibrahim, F.S., Elaiw, A.M., Bakr, A.A.: Effect of the chemical reaction and radiation absorption on unsteady MHD mixed convection flow past a semi-infinite vertical permeable moving plate with heat source and suction. Commun. Nonlinear Sci. Numer. Simul. 13, 1056–1066 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ishak, A.: Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. Meccanica 45, 367–373 (2010)

    Article  MATH  Google Scholar 

  21. Khonsari, M.M., Brewe, D.E.: Effects of viscous dissipation on the lubrication characteristics of micropolar fluids. Acta Mech. 105, 57–68 (1994)

    Article  MATH  Google Scholar 

  22. Kim, Y.J., Lee, J.C.: Analytical studies on MHD oscillatory flow of a micropolar fluid over a vertical porous plate. Surf. Coat. Technol. 171, 187–193 (2003)

    Article  Google Scholar 

  23. Makinde, O.D.: Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate. Int. Commun. Heat Mass Transf. 32, 1411–1419 (2005)

    Article  Google Scholar 

  24. Mukhopadhyay, S., De, P.R., Bhattacharyya, K., Layek, G.C.: Forced convection flow and heat transfer over a porous plate in a Darcy-Forchheimer porous medium in presence of radiation. Meccanica 47(2012), 153–161 (2011)

    MathSciNet  Google Scholar 

  25. Olajuwon, B.I.: Convection heat and mass transfer in a hydromagnetic flow of a second grade fluid in the presence of thermal radiation and thermal diffusion. Int. Commun. Heat Mass Transf. 38, 377–382 (2011)

    Article  Google Scholar 

  26. Pal, D., Mondal, H.: The influence of thermal radiation on hydromagnetic Darcy-Forchheimer mixed convection flow past a stretching sheet embedded in a porous medium. Meccanica 46, 739–753 (2011)

    Article  MATH  Google Scholar 

  27. Rahman, M.M., Sattar, M.A.: MHD free convection and mass transfer flow with oscillatory plate velocity and constant heat source in a rotating frame of reference. Dhaka Univ. J. Sci. 47, 63–73 (1999)

    Google Scholar 

  28. Rahman, M.M., Sattar, M.A.: Transient convective flow of micropolar fluid past a continuously moving vertical porous plate in the presence of radiation. Int. J. Appl. Mech. Eng. 12, 497–513 (2007)

    MathSciNet  Google Scholar 

  29. Rahman, M.M.: Convective flows of micropolar fluids from radiate isothermal porous surfaces with viscous dissipation and joule heating. Commun. Nonlinear Sci. Numer. Simul. 14, 3018–3030 (2009)

    Article  Google Scholar 

  30. Raptis, A.: Radiation and free convection flow through a porous medium. Int. Commun. Heat Mass Transf. 25, 289–295 (1998)

    Article  Google Scholar 

  31. Sattar, Md.A., Kalim, Md.H.: Unsteady free-convection interaction with thermal radiation in a boundary layer flow past a vertical porous plate. J. Math. Phys. Sci. 30, 25–37 (1996)

  32. Ajravelu, K.: Flow and heat transfer in a saturated porous medium. ZAMM. 74, 605–614 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their cordial thanks to reviewers for valuable suggestions and comments to improve the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalidas Das.

Additional information

Communicated by Syakila Ahmad.

Appendix

Appendix

$$\begin{aligned} m_1&= \frac{SSc+\surd \left\{ (SSc)^2+4\alpha Sc\right\} }{2},\quad m_2=\frac{3SPr+\surd \left\{ (3SPr)^2+12Q(3+4F)\right\} }{2(3+4F)},\\ m_3&= \frac{S+\surd \left\{ S^2+4a_1(1+\Delta )\right\} }{2(1+\Delta )},\quad m_4=\frac{S+\surd \left\{ S^2+4in\lambda \right\} }{2\lambda },\\ m_5&= \frac{S+\surd \left\{ S^2+4a_2(1+\Delta )\right\} }{2(1+\Delta )},\quad m_6=\frac{S+\surd \left\{ S^2-4in\lambda \right\} }{2\lambda },\\ m_7&= \frac{S+\surd \left\{ S^2+4a_3(1+\Delta )\right\} }{2(1+\Delta )},\\ A_1&= -\frac{Gm}{(1+\Delta )m_1^2-Sm_1-a_1}\left\{ \frac{1}{m_1}+\frac{m_2Sr}{m_1(m_2-SSc)}\right\} ,\\ \end{aligned}$$
$$\begin{aligned} A_2&= \frac{1}{(1+\Delta )m_2^2-Sm_2-a_1}\left\{ \frac{GmSr}{m_2-SSc}-\frac{Gr}{m_2}\right\} ,\\ A_3&= 1-A_1-A_2-A_4, A_4=\frac{\Delta S\lambda \left\{ A_1(m_1-m_3)+A_2(m_2-m_3)+m_3\right\} }{(2+\Delta )S^2-2\lambda (S^2+a_1\lambda )+\Delta Sm_3\lambda },\\ A_5&= -\frac{\Delta m_4m_5}{(2+\Delta )m_4^2-2(Sm_4+a_2)+\Delta m_4m_5}, A_6=1-A_5, \\ A_7&= -\frac{\Delta m_6m_7}{(2+\Delta )m_6^2-2(Sm_6+a_3)+\Delta m_6m_7},\\ A_8&= 1-A_7,\\ B_1&= \frac{i\left\{ A_1(m_3-m_1)+A_2(m_3-m_2)-m_3\right\} \left\{ (1+\Delta )S^2-\lambda S^2-a_1\lambda ^2\right\} }{(2+\Delta )S^2-2\lambda (S^2+a_1\lambda )+\Delta Sm_3\lambda },\\ B_2&= \frac{im_5\left\{ (1+\Delta )m_4^2-Sm_4-a_2\right\} }{(2+\Delta )m_4^2-2(Sm_4+a_2)+\Delta m_4m_5}, \\ B_3&= \frac{im_7\left\{ (1+\Delta )m_6^2-Sm_6-a_3\right\} }{(2+\Delta )m_6^2-2(Sm_6+a_3)+\Delta m_6m_7} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, P.K., Das, K. & Jana, S. MHD micropolar fluid flow with thermal radiation and thermal diffusion in a rotating frame. Bull. Malays. Math. Sci. Soc. 38, 1185–1205 (2015). https://doi.org/10.1007/s40840-014-0061-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40840-014-0061-5

Keywords

Mathematics Subject Classification