[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This paper describes a discrete wavelet transform-based feature extraction scheme for the classification of EEG signals. In this scheme, the discrete wavelet transform is applied on EEG signals and the relative wavelet energy is calculated in terms of detailed coefficients and the approximation coefficients of the last decomposition level. The extracted relative wavelet energy features are passed to classifiers for the classification purpose. The EEG dataset employed for the validation of the proposed method consisted of two classes: (1) the EEG signals recorded during the complex cognitive task—Raven’s advance progressive metric test and (2) the EEG signals recorded in rest condition—eyes open. The performance of four different classifiers was evaluated with four performance measures, i.e., accuracy, sensitivity, specificity and precision values. The accuracy was achieved above 98 % by the support vector machine, multi-layer perceptron and the K-nearest neighbor classifiers with approximation (A4) and detailed coefficients (D4), which represent the frequency range of 0.53–3.06 and 3.06–6.12 Hz, respectively. The findings of this study demonstrated that the proposed feature extraction approach has the potential to classify the EEG signals recorded during a complex cognitive task by achieving a high accuracy rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Übeyli ED (2009) Combined neural network model employing wavelet coefficients for EEG signals classification. Digit Signal Proc 19:297–308

    Article  Google Scholar 

  2. Orhan U, Hekim M, Ozer M (2011) EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Syst Appl 38:13475–13481

    Article  Google Scholar 

  3. Iscan Z, Dokur Z, Demiralp T (2011) Classification of electroencephalogram signals with combined time and frequency features. Expert Syst Appl 38:10499–10505

    Article  Google Scholar 

  4. Liang N-Y, Saratchandran P, Huang G-B, Sundararajan N (2006) Classification of mental tasks from EEG signals using extreme learning machine. Int J Neural Syst 16:29–38

    Article  PubMed  Google Scholar 

  5. Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schürmann M et al (2001) Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods 105:65–75

    Article  CAS  PubMed  Google Scholar 

  6. Yazdani A, Ebrahimi T, Hoffmann U (2009) Classification of EEG signals using Dempster Shafer theory and a k-nearest neighbor classifier. In: 4th International IEEE/EMBS conference on neural engineering, pp 327–330

  7. Garry H, McGinley B, Jones E, Glavin M (2013) An evaluation of the effects of wavelet coefficient quantisation in transform based EEG compression. Comput Biol Med 43:661–669

    Article  PubMed  Google Scholar 

  8. Guo L, Wu Y, Zhao L, Cao T, Yan W, Shen X (2011) Classification of mental task from EEG signals using immune feature weighted support vector machines. IEEE Trans Magn 47:866–869

    Article  Google Scholar 

  9. Taghizadeh-Sarabi M, Daliri MR, Niksirat KS (2014) Decoding objects of basic categories from electroencephalographic signals using wavelet transform and support vector machines. Brain Topogr 1–14

  10. Acharya UR, Sree SV, Ang PCA, Yanti R, Suri JS (2012) Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst 22:1250002

    Article  PubMed  Google Scholar 

  11. Gandhi T, Panigrahi BK, Anand S (2011) A comparative study of wavelet families for EEG signal classification. Neurocomputing 74:3051–3057

    Article  Google Scholar 

  12. Richman JS, Moorman JR (2000) Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol 278:H2039–H2049

    CAS  PubMed  Google Scholar 

  13. Vidaurre C, Krämer N, Blankertz B, Schlögl A (2009) Time domain parameters as a feature for EEG-based brain–computer interfaces. Neural Netw 22:1313–1319

    Article  PubMed  Google Scholar 

  14. Übeyli ED (2010) Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Syst Appl 37:985–992

    Article  Google Scholar 

  15. Thatcher RW, North D, Biver C (2005) EEG and intelligence: relations between EEG coherence, EEG phase delay and power. Clin Neurophysiol 116:2129–2141

    Article  CAS  PubMed  Google Scholar 

  16. Hariharan M, Vijean V, Sindhu R, Divakar P, Saidatul A, Yaacob S (2014) Classification of mental tasks using stockwell transform. Comput Electr Eng 40:1741

    Article  Google Scholar 

  17. Noshadi S, Abootalebi V, Sadeghi MT, Shahvazian MS (2014) Selection of an efficient feature space for EEG-based mental task discrimination. Biocybern Biomed Eng 34:159–168

    Article  Google Scholar 

  18. Zhang L, He W, He C, Wang P (2010) Improving mental task classification by adding high frequency band information. J Med Syst 34:51–60

    Article  PubMed  Google Scholar 

  19. Hosni SM, Gadallah ME, Bahgat SF, AbdelWahab MS (2007) Classification of EEG signals using different feature extraction techniques for mental-task BCI. In: International conference on computer engineering & systems, 2007. ICCES’07, pp 220–226

  20. Xue J-Z, Zhang H, Zheng C-x, Yan X-G (2003) Wavelet packet transform for feature extraction of EEG during mental tasks. In: International conference on machine learning and cybernetics, 2003, pp 360–363

  21. Zhiwei L, Minfen S (2007) Classification of mental task EEG signals using wavelet packet entropy and SVM. In: 8th International conference on electronic measurement and instruments, 2007. ICEMI’07, pp 3-906–3-909

  22. Keirn ZA, Aunon JI (1990) A new mode of communication between man and his surroundings. IEEE Trans Biomed Eng 37:1209–1214

    Article  CAS  PubMed  Google Scholar 

  23. Nai-Jen H, Palaniappan R (2004) Classification of mental tasks using fixed and adaptive autoregressive models of EEG signals. In: 26th Annual international conference of the IEEE engineering in medicine and biology society, 2004. IEMBS’04, pp 507–510

  24. Lin C-J, Hsieh M-H (2009) Classification of mental task from EEG data using neural networks based on particle swarm optimization. Neurocomputing 72:1121–1130

    Article  Google Scholar 

  25. Rodríguez-Bermúdez G, García-Laencina PJ, Roca-González J, Roca-Dorda J (2013) Efficient feature selection and linear discrimination of EEG signals. Neurocomputing 115:161–165

    Article  Google Scholar 

  26. Karkare S, Saha G, Bhattacharya J (2009) Investigating long-range correlation properties in EEG during complex cognitive tasks. Chaos Solitons Fractals 42:2067–2073

    Article  Google Scholar 

  27. Jahidin A, Ali MM, Taib MN, Tahir NM, Yassin IM, Lias S (2014) Classification of intelligence quotient via brainwave sub-band power ratio features and artificial neural network. Comput Methods Programs Biomed 114:50–59

    Article  CAS  PubMed  Google Scholar 

  28. Amin HU, Malik AS, Subhani AR, Badruddin N, Chooi W-T (2013) Dynamics of scalp potential and autonomic nerve activity during intelligence test. In: Lee M et al (eds) Neural information processing, vol 8226. Springer, Berlin, pp 9–16

    Chapter  Google Scholar 

  29. Raven J (2000) The Raven’s progressive matrices: change and stability over culture and time. Cogn Psychol 41:1–48

    Article  CAS  PubMed  Google Scholar 

  30. Kunda M, McGreggor K, Goel A (2012) Reasoning on the Raven’s advanced progressive matrices test with iconic visual representations. In: 34th Annual conference of the cognitive science society pp 1828–1833

  31. Amin HU, Malik AS, Badruddin N, Chooi W-T (2013) EEG mean power and complexity analysis during complex mental task. In: ICME International conference on complex medical engineering (CME) pp 648–651

  32. Jahankhani P, Kodogiannis V, Revett K (2006) EEG signal classification using wavelet feature extraction and neural networks. In: IEEE John Vincent Atanasoff 2006 international symposium on modern computing, 2006. JVA’06. pp 120–124

  33. Subasi A (2007) EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst Appl 32:1084–1093

    Article  Google Scholar 

  34. Gonzalez RC, Woods RE (2002) Digital image processing, 2nd edn. Prentice Hall, SL

    Google Scholar 

  35. Hausfeld L, De Martino F, Bonte M, Formisano E (2012) Pattern analysis of EEG responses to speech and voice: influence of feature grouping. Neuroimage 59:3641–3651

    Article  PubMed  Google Scholar 

  36. Ben-Hur A, Weston J (2010) A user’s guide to support vector machines. In: Data mining techniques for the life sciences, Springer, New York, pp 223–239

  37. Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fMRI: a tutorial overview. Neuroimage 45:S199–S209

    Article  PubMed Central  PubMed  Google Scholar 

  38. Subasi A, Gursoy MI (2010) EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst Appl 37:8659–8666

    Article  Google Scholar 

  39. Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan Kaufmann, Burlington

    Google Scholar 

  40. Daud M, Yunus J (2004) Classification of mental tasks using de-noised EEG signals. In: 7th International conference on signal processing, pp 2206–2209

  41. Guo L, Rivero D, Seoane JA, Pazos A (2009) Classification of EEG signals using relative wavelet energy and artificial neural networks. In: Proceedings of the first ACM/SIGEVO summit on genetic and evolutionary computation, pp 177–184

  42. Diez PF, Mut V, Laciar E, Torres A, Avila E (2009) Application of the empirical mode decomposition to the extraction of features from EEG signals for mental task classification. In: Annual international conference of the IEEE engineering in medicine and biology society, 2009. EMBC 2009, pp 2579–2582

  43. Dimitriadis SI, Laskaris NA, Tsirka V, Vourkas M, Micheloyannis S (2010) What does delta band tell us about cognitive processes: a mental calculation study. Neurosci Lett 483:11–15

    Article  CAS  PubMed  Google Scholar 

  44. Harper J, Malone SM, Bernat EM (2014) Theta and delta band activity explain N2 and P3 ERP component activity in a go/no-go task. Clin Neurophysiol 125:124–132

    Article  PubMed Central  PubMed  Google Scholar 

  45. Amin H, Malik AS (2013) Human memory retention and recall processes: a review of EEG and fMRI studies. Neurosciences 18:330–344

    PubMed  Google Scholar 

  46. Ergen M, Marbach S, Brand A, Başar-Eroğlu C, Demiralp T (2008) P3 and delta band responses in visual oddball paradigm in schizophrenia. Neurosci Lett 440:304–308

    Article  CAS  PubMed  Google Scholar 

  47. Demiralp T, Ademoglu A, Schürmann M, Basar-Eroglu C, Basar E (1999) Detection of P300 waves in single trials by the wavelet transform (WT). Brain Lang 66:108–128

    Article  CAS  PubMed  Google Scholar 

  48. Gennady GK (2012) EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 36:677–695

    Article  Google Scholar 

  49. Baijal S, Srinivasan N (2010) Theta activity and meditative states: spectral changes during concentrative meditation. Cogn Process 11:31–38

    Article  PubMed  Google Scholar 

  50. Sakowitz O (2001) The selectively distributed theta system: functions. Int J Psychophysiol 39:197–212

    Article  PubMed  Google Scholar 

  51. Nigbur R, Ivanova G, Stürmer B (2011) Theta power as a marker for cognitive interference. Clin Neurophysiol 122:2185–2194

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research work has been supported by University Research Internal Funding (URIF: 0153AA-B26), Universiti Teknologi PETRONAS; the Fundamental Research Grant Scheme (Ref: FRGS/1/2014/TK03/UTP/02/1), Ministry of Education (MOE), Malaysia and by NSTIP strategic technologies programs, Grant number (12-INF2582-02), in the Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Saeed Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, H.U., Malik, A.S., Ahmad, R.F. et al. Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques. Australas Phys Eng Sci Med 38, 139–149 (2015). https://doi.org/10.1007/s13246-015-0333-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0333-x

Keywords

Navigation