[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films

  • Research Article
  • Published:
Nano Research Aims and scope

An Erratum to this article was published on 23 June 2017

Abstract

Layered semiconductors with atomic thicknesses are becoming increasingly important as active elements in high-performance electronic devices owing to their high carrier mobilities, large surface-to-volume ratios, and rapid electrical responses to their surrounding environments. Here, we report the first implementation of a highly sensitive chemical-vapor-deposition-grown multilayer MoSe2 field-effect transistor (FET) in a NO2 gas sensor. This sensor exhibited ultra-high sensitivity (S = ca. 1,907 for NO2 at 300 ppm), real-time response, and rapid on–off switching. The high sensitivity of our MoSe2 gas sensor is attributed to changes in the gap states near the valence band induced by the NO2 gas absorbed in the MoSe2, which leads to a significant increase in hole current in the off-state regime. Device modeling and quantum transport simulations revealed that the variation of gap states with NO2 concentration is the key mechanism in a MoSe2 FET-based NO2 gas sensor. This comprehensive study, which addresses material growth, device fabrication, characterization, and device simulations, not only indicates the utility of MoSe2 FETs for high-performance chemical sensors, but also establishes a fundamental understanding of how surface chemistry influences carrier transport in layered semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui, Y.; Wei, Q. Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

    Article  Google Scholar 

  2. Lavrik, N. V.; Sepaniak, M. J.; Datskos, P. G. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 2004, 75, 2229–2253.

    Article  Google Scholar 

  3. Liu, Y. X.; Dong, X. C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283–2307.

    Article  Google Scholar 

  4. Lee, J.; Dak, P.; Lee, Y.; Park, H.; Choi, W.; Alam, M. A.; Kim, S. Two-dimensional layered MoS2 biosensors enable highly sensitive detection of biomolecules. Sci. Rep. 2014, 4, 7352.

    Article  Google Scholar 

  5. Kong, J.; Franklin, N. R.; Zhou, C. W.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.

    Article  Google Scholar 

  6. Tamvakos, A.; Korir, K.; Tamvakos, D.; Calestani, D.; Cicero, G.; Pullini, D. NO2 gas sensing mechanism of ZnO thin-film transducers: Physical experiment and theoretical correlation study. ACS Sens. 2016, 1, 406–412.

    Article  Google Scholar 

  7. Collins, P. G.; Bradley, K.; Ishigami, M.; Zettl, A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 2000, 287, 1801–1804.

    Article  Google Scholar 

  8. Liu, B.; Chen, L.; Liu, G.; Abbas, A. N.; Fathi, M.; Zhou, C. W. High-performance chemical sensing using Schottky-contacted chemical vapor deposition grown monolayer MoS2 transistors. ACS Nano 2014, 8, 5304–5314.

    Article  Google Scholar 

  9. Lu, G. H.; Park, S.; Yu, K. H.; Ruoff, R. S.; Ocola, L. E.; Rosenmann, D.; Chen, J. H. Toward practical gas sensing with highly reduced graphene oxide: A new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 2011, 5, 1154–1164.

    Article  Google Scholar 

  10. Zhang, J.; Boyd, A.; Tselev, A.; Paranjape, M.; Barbara, P. Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors. Appl. Phys. Lett. 2006, 88, 123112.

    Article  Google Scholar 

  11. Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y.-J.; Park, S.-G.; Kwon, J.-D.; Kim, C. S.; Song, M. et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 2015, 5, 8052.

    Article  Google Scholar 

  12. Late, D. J.; Huang, Y.-K.; Liu, B.; Acharya, J.; Shirodkar, S. N.; Luo, J. J.; Yan, A. M.; Charles, D.; Waghmare, U. V.; Dravid, V. P. et al. Sensing behavior of atomically thinlayered MoS2 transistors. ACS Nano 2013, 7, 4879–4891.

    Article  Google Scholar 

  13. Li, H.; Yin, Z. Y.; He, Q. Y.; Li, H.; Huang, X.; Lu, G.; Fam, D. W. H.; Tok, A. I. Y.; Zhang, Q.; Zhang, H. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 2012, 8, 63–67.

    Article  Google Scholar 

  14. Boarino, L.; Baratto, C.; Geobaldo, F.; Amato, G.; Comini, E.; Rossi, A. M.; Faglia, G.; Lérondel, G.; Sberveglieri, G. NO2 monitoring at room temperature by a porous silicon gas sensor. Mater. Sci. Eng. B 2000, 69–70, 210–214.

    Article  Google Scholar 

  15. Comini, E.; Faglia, G.; Sberveglieri, G.; Pan, Z. W.; Wang, Z. L. Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl. Phys. Lett. 2002, 81, 1869–1871.

    Article  Google Scholar 

  16. Das, A.; Dost, R.; Richardson, T.; Grell, M.; Morrison, J. J.; Turner, M. L. A nitrogen dioxide sensor based on an organic transistor constructed from smorphous semiconducting polymers. Adv. Mater. 2007, 19, 4018–4023.

    Article  Google Scholar 

  17. McAlpine, M. C.; Ahmad, H.; Wang, D. W.; Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 2007, 6, 379–384.

    Article  Google Scholar 

  18. Zhang, D. H.; Liu, Z. Q.; Li, C.; Tang, T.; Liu, X. L.; Han, S.; Lei, B.; Zhou, C. W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004, 4, 1919–1924.

    Article  Google Scholar 

  19. Cho, B.; Yoon, J.; Lim, S. K.; Kim, A. R.; Kim, D.-H.; Park, S.-G.; Kwon, J.-D.; Lee, Y.-J.; Lee, K.-H.; Lee, B. H. et al. Chemical sensing of 2D graphene/MoS2 heterostructure device. ACS Appl. Mater. Interfaces 2015, 7, 16775–16780.

    Article  Google Scholar 

  20. Late, D. J.; Doneux, T.; Bougouma, M. Single-layer MoSe2 based NH3 gas sensor. Appl. Phys. Lett. 2014, 105, 233103.

    Article  Google Scholar 

  21. Samnakay, R.; Jiang, C.; Rumyantsev, S. L.; Shur, M. S.; Balandin, A. A. Selective chemical vapor sensing with fewlayer MoS2 thin-film transistors: Comparison with graphene devices. Appl. Phys. Lett. 2015, 106, 023115.

    Article  Google Scholar 

  22. Rhyee, J.-S.; Kwon, J.; Dak, P.; Kim, J. H.; Kim, S. M.; Park, J.; Hong, Y. K.; Song, W. G.; Omkaram, I.; Alam, M. A. et al. High-mobility transistors based on large-area and highly crystalline CVD-grown MoSe2 films on insulating substrates. Adv. Mater. 2016, 28, 2316–2321.

    Article  Google Scholar 

  23. Datta, S. Quantum Transport: Atom to Transistor, 2nd ed.; Cambridge University Press: Cambridge, 2005.

    Book  Google Scholar 

  24. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

    Article  Google Scholar 

  25. Kumar, A.; Ahluwalia, P. K. Tunable dielectric response of transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te): Effect of quantum confinement. Phys. B-Condens. Matter 2012, 407, 4627–4634.

    Article  Google Scholar 

  26. Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

    Article  Google Scholar 

  27. Bissessur, R.; Xu, H. Nanomaterials based on molybdenum diselenide. Mater. Chem. Phys. 2009, 117, 335–337.

    Article  Google Scholar 

  28. Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

    Article  Google Scholar 

  29. Zhao, Y. Y.; Luo, X.; Li, H.; Zhang, J.; Araujo, P. T.; Gan, C. K.; Wu, J.; Zhang, H.; Quek, S. Y.; Dresselhaus, M. S. et al. Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. Nano Lett. 2013, 13, 1007–1015.

    Article  Google Scholar 

  30. Jung, C.; Kim, S. M.; Moon, H.; Han, G.; Kwon, J.; Hong, Y. K.; Omkaram, I.; Yoon, Y.; Kim, S.; Park, J. Highly crystalline CVD-grown multilayer MoSe2 thin film transistor for fast photodetector. Sci. Rep. 2015, 5, 15313.

    Article  Google Scholar 

  31. Xia, J.; Huang, X.; Liu, L.-Z.; Wang, M.; Wang, L.; Huang, B.; Zhu, D.-D.; Li, J.-J.; Gu, C.-Z.; Meng, X.-M. CVD synthesis of large-area, highly crystalline MoSe2 atomic layers on diverse substrates and application to photodetectors. Nanoscale 2014, 6, 8949–8955.

    Article  Google Scholar 

  32. Yue, Q.; Shao, Z.; Chang, S.; Li, J. Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res. Lett. 2013, 8, 425.

    Article  Google Scholar 

  33. Sharma, M.; Jamdagni, P.; Kumar, A.; Ahluwalia, P. Interactions of gas molecules with monolayer MoSe2: A first principle study. In AIP Conference Proceedings, Dae Solid State Physics Symposium 2015; AIP Publishing: Uttar Pradesh, India, 2016; pp 140045.

    Google Scholar 

  34. Fan, Z. Y.; Lu, J. G. Gate-refreshable nanowire chemical sensors. Appl. Phys. Lett. 2005, 86, 123510.

    Article  Google Scholar 

  35. Fan, S.-W.; Srivastava, A. K.; Dravid, V. P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Appl. Phys. Lett. 2009, 95, 142106.

    Article  Google Scholar 

  36. Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. Practical chemical sensors from chemically derived graphene. ACS Nano 2009, 3, 301–306.

    Article  Google Scholar 

  37. Li, J.; Lu, Y. J.; Ye, Q.; Cinke, M.; Han, J.; Meyyappan, M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003, 3, 929–933.

    Article  Google Scholar 

  38. Some, S.; Xu, Y.; Kim, Y.; Yoon, Y.; Qin, H. Y.; Kulkarni, A.; Kim, T.; Lee, H. Highly sensitive and selective gas sensor using hydrophilic and hydrophobic graphenes. Sci. Rep. 2013, 3, 1868.

    Article  Google Scholar 

  39. Wöllenstein, J.; Böttner, H.; Jaegle, M.; Becker, W. J.; Wagner, E. Material properties and the influence of metallic catalysts at the surface of highly dense SnO2 films. Sens. Actuators B: Chem. 2000, 70, 196–202.

    Article  Google Scholar 

  40. Ryzhikov, A.; Labeau, M.; Gaskov, A. Al2O3 (M = Pt, Ru) catalytic membranes for selective semiconductor gas sensors. Sens. Actuators B: Chem. 2005, 109, 91–96.

    Article  Google Scholar 

  41. Fleischer, M.; Meixner, H. Selectivity in high-temperature operated semiconductor gas-sensors. Sens. Actuators B: Chem. 1998, 52, 179–187.

    Article  Google Scholar 

  42. Matsuguchi, M.; Uno, T. Molecular imprinting strategy for solvent molecules and its application for QCM-based VOC vapor sensing. Sens. Actuators B: Chem. 2006, 113, 94–99.

    Article  Google Scholar 

  43. Dubois, M.; Brunet, J.; Pauly, A.; Spinelle, L.; Ndiaye, A.; Guérin, K.; Varenne, C.; Lauron, B.; Klyushin, A. Y.; Vinogradov, A. S. A carbonaceous chemical filter for the selective detection of NO2 in the environment. Carbon 2013, 52, 17–29.

    Article  Google Scholar 

  44. Pauly, A.; Dubois, M.; Brunet, J.; Spinelle, L.; Ndiaye, A.; Guérin, K.; Varenne, C.; Vinogradov, A. S.; Klyushin, A. Y. An innovative gas sensor system designed from a sensitive organic semiconductor downstream a nanocarbonaceous chemical filter for selective detection of NO2 in an environmental context. Part II: Interpretations of O3/ nanocarbons and NO2/nanocarbons interactions. Sens. Actuators B: Chem. 2012, 173, 652–658.

    Article  Google Scholar 

  45. Brunet, J.; Pauly, A.; Varenne, C.; Ndiaye, A. L.; Dubois, M. Nanocarbonaceous filters for the achievement of highly sensitive and selective NO2 monitoring by means of phthalocyanine-based resistive sensors. Procedia Eng. 2012, 47, 29–32.

    Article  Google Scholar 

Download references

Acknowledgements

This research is also supported in part by the National Research Foundation of Korea (Nos. NRF-2013M3C1A3059590, NRF-2014M3A9D7070732, and NRF-2015R1A5A1037548). This work was supported in part by U.S. National Science Foundation under grant CMMI 826276, and in part by NSERC Discovery Grant (No. RGPIN-05920-2014). This research was supported by the Commercializations Promotion Agency for R&D Outcomes (COMPA) funded by the Ministry of Science, ICT and Future Planning (MISP) and in part by the fund from the Korea Institute of Science and Technology (KIST) institutional program. Computing resources were provided by SHARCNET through Compute Canada. D. Y. acknowledges the financial support by WIN Nanofellowship. The authors would like to thank Prof. Jong-Soo Rhyee for supporting CVD MoSe2 flakes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaehyun Hur, Youngki Yoon or Sunkook Kim.

Additional information

These authors contributed equally to this work.

An erratum to this article is available at http://dx.doi.org/10.1007/s12274-017-1725-x.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, J., Yin, D., Liu, N. et al. A highly sensitive chemical gas detecting transistor based on highly crystalline CVD-grown MoSe2 films. Nano Res. 10, 1861–1871 (2017). https://doi.org/10.1007/s12274-016-1291-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1291-7

Keywords