Abstract
In this paper, a Susceptible–Infected–Recovered (SIR) model with imprecise biological parameters is studied. Due to the lack of precise numerical data of the biological parameters here the model with imprecise data is considered. Sometimes it is not possible to collect the numerical data as a fixed value, but the interval in which it belongs to can easily be determined. For this reason an SIR model is introducing with the interval numbers as parametric functional form. Then the existence of equilibrium points with their feasibility criteria is checked and discussed about the stability of the system. Optimal control problem is formulated and solved. Numerical simulation works are given in support of the analytical results.
Similar content being viewed by others
References
Arqub, O.A., Al-Smadi, M., Momani, S., Hayat, T.: Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput. (2016). doi:10.1007/s00500-016-2262-3
Arqub, O.A., Al-Smadi, M., Momani, S., Hayat, T.: Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. (2015). doi:10.1007/s00500-015-1707-4
Arqub, O.A.: Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integro differential equations. Neural Comput. Appl. (2015). doi:10.1007/s00521-015-2110-x
Arqub, O.A., El-Ajou, A.: Solution of the fractional epidemic model by homotopy analysis method. J. King Saud Univ. Sci. 25, 73–81 (2013)
Beretta, E., Hara, T., Ma, W., Takeuchi, Y.: Global asymptotic stability of an SIR epidemic model with distributed time delay. Nonlinear Anal. 47, 4107–4115 (2001)
Beretta, E., Breda, D.: An SEIR epidemic model with constant latency time and infectious period. Math. Biosci. Eng. 8, 931–952 (2011)
Bernoulli, D.: Reflexions sur les avantages de linoculation, Mercure de France (1760) 173–190. English translation by R. Pulskamp, Department of Mathematics and Computer Science, Xavier University, Cincinnati (2009); http://www.cs.xu.edu/math/Sources/DanBernoulli/1760-reflections-inoculation (1760)
Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)
Buonomo, B., D’Onofrio, A., Lacitignola, D.: Global stability of an SIR epidemic model with information dependent vaccination. Math. Biosci. 216, 9–16 (2008)
Buonomo, B., Lacitignola, D.: On the backward bifurcation of a vaccination model with nonlinear incidence. Nonlinear Anal.: Model. Control 16, 30–46 (2011)
Eckalbar, J.C., Eckalbar, W.L.: Dynamics of an epidemic model with quadratic treatment. Nonlinear Anal.: Real World Appl. 12, 320–332 (2011)
Hamer, W.H.: Epidemic disease in England. Lancet 1, 733–739 (1906)
Hu, Z., Ma, W., Ruan, S.: Analysis of SIR epidemic models with nonlinear incidencerate and treatment. Math. Biosci. 238, 12–20 (2012)
Jana, S., Haldar, P., Kar, T.K.: Complex dynamics of an epidemic model with vaccination and treatment controls. J. Dyn. Control Int. (2015). doi:10.1007/s40435-015-0189-7
Jana, S., Nandi, S.K., Kar, T.K.: Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment. Acta Biotheor. 64, 6584 (2016). doi:10.1007/s10441-015-9273-9
Jana, S., Kar, T.K.: A mathematical study of a prey–predator model in relevance to pest control. Nonlinear Dyn. 74, 667–683 (2013)
Kar, T.K., Batabyal, A.: Stability analysis and optimal control of an SIR epidemic model with vaccination. BioSystems 104, 127–135 (2011)
Kar, T.K., Jana, S.: Application of three controls optimally in a vector-borne disease-a mathematical study. Commun. Nonlinear Sci. Numer. Simul. 18, 2868–2884 (2013a)
Kar, T.K., Jana, S.: A theoretical study on mathematical modelling of an infectious disease with application of optimal control. BioSystems 111, 37–50 (2013b)
Kar, T.K., Mondal, P.K.: Global dynamics and bifurcation in delayed SIR epidemic model. Nonlinear Anal. Real World Appl. 12, 2058–2068 (2011)
Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, NJ (2008)
Kermack, W.O., McKendric, A.G.: Contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927)
Laarabi, H., Abta, A., Hattaf, K.: Optimal control of a delayed SIRS epidemic model with vaccination and treatment. Acta Biotheor. (2015). doi:10.1007/s10441-015-9244-1
Lenhart, S., Workman, J.T.: Optimal Control Applied to Biological Model. Mathematical and Computational Biology Series Chapman & Hall/CRC (2007)
Makinde, O.D.: Adomian decomposition approach to a SIR epidemic model with constant vaccination strategy. Appl. Math. Comput. 184, 842–848 (2007)
Mondal, P.K., Jana, S., Haldar, p, Kar, T.K.: Dynamical behavior of an epidemic model in a fuzzy transmission. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 23(5), 651–665 (2015)
Okosun, K.O., Ouifki, R., Marcus, N.: Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity. Biosystems 106, 136–145 (2011)
Okosun, K.O., Makinde, O.D.: Impact of chemo-therapy on optimal control of malaria disease with infected immigrants. BioSystems 104(1), 32–41 (2011)
Pal, D., Mahapatra, G., Samanta, G.P.: Optimal harvesting of prey–predator system with interval biological parameters: a bioeconomic model. Math. Biosci. (2012). doi:10.1016/j.mbs.2012.11.007
Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)
Qiu, Z., Feng, Z.: Transmission dynamics of an influenza model with vaccination and antiviral treatment. Bull. Math. Biol. 72, 1–33 (2010)
Sahu, G.P., Dhar, J.: Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate. Appl. Math. Model. 36, 908–923 (2012)
Sharma, S., Samanta G.P.: Optimal harvesting of a two species competition model with imprecise biological parameters. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1354-9
Tchuenche, J.M., Khamis, S.A., Agusto, F.B., Mpeshe, S.C.: Optimal control and sensitivity analysis of an influenza model with treatment and vaccination. Acta. Biotheor. 59, 1–28 (2011)
van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of diseases transmission. Math. Biosci. 180, 29–48 (2002)
Wang, W.: Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201, 58–71 (2006)
Wu, L., Feng, Z.: Homoclinic bifurcation in an SIQR model for childhood diseases. J. Differ. Equ. 168, 150–167 (2000)
Yi, N., Zhang, Q., Mao, K., Yang, D., Li, Q.: Analysis and control of an SEIR epidemic system with nonlinear transmission rate. Math. Comput. Model. 50, 1498–1513 (2009)
Zadeh, L. A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
Zhang, Y., Agarwal, P., Bhatnagar, V., Balochian, S., Yan, J.: Swarm intelligence and its applications. Sci. World J., Volume 2013, Article ID 528069, 3 p (2013). doi:10.1155/2013/528069
Zhang, Y., Balochian, S., Agarwal, P., Bhatnagar, V., Housheya, O.J.: Artificial Intelligence and Its Applications 2014, Mathematical Problems in Engineering Volume 2016, Article ID 3871575, 6 p (2016). doi:10.1155/2016/3871575
Zhang, F.-F., Jin, Z., Sun, G.-Q.: Bifurcation analysis of a delayed epidemic model. Appl. Math. Comput. 216, 753–767 (2010)
Zhang, X., Liu, X.: Backward Bifurcation of an epidemic model with saturated treatment. J. Math. Anal. Appl. 348, 433–443 (2008)
Zhou, Y., Yang, K., Zhou, K., Liang, Y.: Optimal vaccination policies for an SIR model with limited resources. Acta Biotheor. 62, 171–181 (2014)
Zhou, L., Fan, M.: Dynamics of an SIR epidemic model with limited resources visited. Nonlinear Anal.: Real world Appl. 13, 312–324 (2012)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Das, A., Pal, M. A mathematical study of an imprecise SIR epidemic model with treatment control. J. Appl. Math. Comput. 56, 477–500 (2018). https://doi.org/10.1007/s12190-017-1083-6
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12190-017-1083-6