[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BM:

Basal medial domain of the basal plate

DA:

Dopamine

DVD deficiency:

Developmental vitamin D deficiency

E:

Embryonic day

FP:

Floor plate

IZ:

Intermediate zone

Lmx1a/b:

LIM homeobox transcription factor 1-alpha/-beta

mes:

Mesencephalon

MZ:

Mantle zone

Nurr1:

Nuclear receptor related 1 protein

ROI:

Region of interest

SD:

Sprague Dawley

SHH:

Sonic hedgehog

SNc:

Substantia nigra pars compacta

TH:

Tyrosine hydroxylase

VDR:

Vitamin D receptor

VTA:

Ventral tegmental area

VZ:

Ventricular zone

References

  1. Bodnar LM, Simhan HN, Powers RW, Frank MP, Cooperstein E, Roberts JM (2007) High prevalence of vitamin D insufficiency in black and white pregnant women residing in the northern United States and their neonates. J Nutr 137:447–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McGrath J (2001) Does 'imprinting' with low prenatal vitamin D contribute to the risk of various adult disorders? Med Hypotheses 56:367–371. doi:10.1054/mehy.2000.1226

    Article  CAS  PubMed  Google Scholar 

  3. McGrath J (1999) Hypothesis: is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophr Res 40:173–177

    Article  CAS  PubMed  Google Scholar 

  4. McGrath JJ, Burne TH, Féron F, Mackay-Sim A, Eyles DW (2010) Developmental vitamin D deficiency and risk of schizophrenia: a 10-year update. Schizophr Bull 36:1073–1078. doi:10.1093/schbul/sbq101

    Article  PubMed  PubMed Central  Google Scholar 

  5. Eyles D, Brown J, Mackay-Sim D, McGrath J, Feron F (2003) Vitamin D3 and brain development. Neuroscience 118:641–653. doi:10.1016/S0306-4522(03)00040-X

    Article  CAS  PubMed  Google Scholar 

  6. Kesby JP, Cui X, O'Loan J, McGrath JJ, Burne THJ, Eyles DW (2010) Developmental vitamin D deficiency alters dopamine-mediated behaviors and dopamine transporter function in adult female rats. Psychopharmacology 208:159–168. doi:10.1007/s00213-009-1717-y

    Article  CAS  PubMed  Google Scholar 

  7. Kesby JP, Burne THJ, McGrath JJ, Eyles DW (2006) Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: an animal model of schizophrenia. Biol Psychiatry 60:591–596. doi:10.1016/j.biopsych.2006.02.033

    Article  CAS  PubMed  Google Scholar 

  8. Eyles D, Feldon J, Meyer U (2012) Schizophrenia: do all roads lead to dopamine or is this where they start? Evidence from two epidemiologically informed developmental rodent models. Transl Psychiatry 2:e81. doi:10.1038/tp.2012.6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arenas E, Denham M, Villaescusa JC (2015) How to make a midbrain dopaminergic neuron. Development (Cambridge, England) 142:1918–1936. doi:10.1242/dev.097394

  10. Blaess S, Ang S-L (2015) Genetic control of midbrain dopaminergic neuron development. Wiley Interdisciplinary Reviews Developmental biology 7. doi:10.1002/wdev.169

  11. Volpicelli F, Perrone-Capano C, Da Pozzo P, Colucci-D'Amato L, Di Porzio U (2004) Modulation of nurr1 gene expression in mesencephalic dopaminergic neurones. J Neurochem 88:1283–1294. doi:10.1046/j.1471-4159.2003.02254.x

    Article  CAS  PubMed  Google Scholar 

  12. Shults CW, Hashimoto R, Brady RM, Gage FH (1990) Dopaminergic cells align along radial glia in the developing mesencephalon of the rat. Neuroscience 38:427–436. doi:10.1016/0306-4522(90)90039-7

    Article  CAS  PubMed  Google Scholar 

  13. Zetterström RH (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276:248–250. doi:10.1126/science.276.5310.248

    Article  PubMed  Google Scholar 

  14. Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, Burbach JP, Conneely OM (1998) Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci U S A 95:4013–4018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sakurada K, Ohshima-Sakurada M, Palmer TD, Gage FH (1999) Nurr1, an orphan nuclear receptor, is a transcriptional activator of endogenous tyrosine hydroxylase in neural progenitor cells derived from the adult brain. Development (Cambridge, England) 126:4017–4026

  16. Yang S, Edman LC, Sánchez-Alcañiz JA, Fritz N, Bonilla S, Hecht J, Uhlén P, Pleasure SJ, Villaescusa JC, Marín O, Arenas E (2013) Cxcl12/Cxcr4 signaling controls the migration and process orientation of A9-A10 dopaminergic neurons. Development (Cambridge, England) 140:4554–4564. doi:10.1242/dev.098145

  17. Bodea GO, Spille J-H, Abe P, Andersson AS, Acker-Palmer A, Stumm R, Kubitscheck U, Blaess S (2014) Reelin and CXCL12 regulate distinct migratory behaviors during the development of the dopaminergic system. Development (Cambridge, England) 141:661–673. doi:10.1242/dev.099937

  18. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ (2005) Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat 29:21–30. doi:10.1016/j.jchemneu.2004.08.006

    Article  CAS  PubMed  Google Scholar 

  19. Veenstra TD, Prüfer K, Koenigsberger C, Brimijoin SW, Grande JP, Kumar R (1998) 1,25-Dihydroxyvitamin D3 receptors in the central nervous system of the rat embryo. Brain Res 804:193–205

    Article  CAS  PubMed  Google Scholar 

  20. Cui X, Pelekanos M, Liu P-Y, Burne THJ, McGrath JJ, Eyles DW (2013) The vitamin D receptor in dopamine neurons; its presence in human substantia nigra and its ontogenesis in rat midbrain. Neuroscience 236:77–87. doi:10.1016/j.neuroscience.2013.01.035

    Article  CAS  PubMed  Google Scholar 

  21. Ma G, Torres EM, White A, Ra F-G, Dunnett SB (2006) Re-examining the ontogeny of substantia nigra dopamine neurons. Eur J Neurosci 23:1384–1390. doi:10.1111/j.1460-9568.2006.04637.x

    Article  Google Scholar 

  22. Cui X, Pelekanos M, Burne THJ, McGrath JJ, Eyles DW (2010) Maternal vitamin D deficiency alters the expression of genes involved in dopamine specification in the developing rat mesencephalon. Neurosci Lett 486:220–223. doi:10.1016/j.neulet.2010.09.057

    Article  CAS  PubMed  Google Scholar 

  23. Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment. Arch Gen Psychiatry 69:776–786. doi:10.1001/archgenpsychiatry.2012.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eyles DW, Burne THJ, Alexander S, Cui X, Mcgrath JJ (2011) The Developmental Vitamin D (DVD) Model of Schizophrenia 59:113–125. doi:10.1007/978-1-61779-157-4

    CAS  Google Scholar 

  25. Bayer SA, Wills KV, Triarhou LC, Ghetti B (1995) Time of neuron origin and gradients of neurogenesis in midbrain dopaminergic neurons in the mouse. Exp Brain Res 105:191–199. doi:10.1007/BF00240955

    CAS  PubMed  Google Scholar 

  26. Paxinos G, Ashwell KWS (2008) Atlas of the developing rat nervous system, Third edn. Elsevier Science Publishing Co Inc, New York

    Google Scholar 

  27. Nakatani T, Kumai M, Mizuhara E, Minaki Y, Ono Y (2010) Lmx1a and Lmx1b cooperate with Foxa2 to coordinate the specification of dopaminergic neurons and control of floor plate cell differentiation in the developing mesencephalon. Dev Biol 339:101–113. doi:10.1016/j.ydbio.2009.12.017

    Article  CAS  PubMed  Google Scholar 

  28. Chung S, Leung A, Han B-S, Chang M-Y, Moon J-I, Kim C-H, Hong S, Pruszak J et al (2009) Wnt1-lmx1a forms a novel autoregulatory loop and controls midbrain dopaminergic differentiation synergistically with the SHH-FoxA2 pathway. Cell Stem Cell 5:646–658. doi:10.1016/j.stem.2009.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayes L, Zhang Z, Albert P, Zervas M, Ahn S (2011) Timing of Sonic hedgehog and Gli1 expression segregates midbrain dopamine neurons. J Comp Neurol 519:3001–3018. doi:10.1002/cne.22711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andersson ER, Saltó C, Villaescusa JC, Cajanek L, Yang S, Bryjova L, Nagy II, Vainio SJ et al (2013) Wnt5a cooperates with canonical Wnts to generate midbrain dopaminergic neurons in vivo and in stem cells. Proc Natl Acad Sci U S A 110:E602–E610. doi:10.1073/pnas.1208524110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayes L, Ralls S, Wang H, Ahn S (2013) Duration of Shh signaling contributes to mDA neuron diversity. Dev Biol 374:115–126. doi:10.1016/j.ydbio.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  32. Dormoy V, Béraud C, Lindner V, Coquard C, Barthelmebs M, Brasse D, Jacqmin D, Lang H et al (2012) Vitamin D3 triggers antitumor activity through targeting hedgehog signaling in human renal cell carcinoma. Carcinogenesis 33:2084–2093. doi:10.1093/carcin/bgs255

    Article  CAS  PubMed  Google Scholar 

  33. Larriba MJ, González-Sancho JM, Barbáchano A, Niell N, Ferrer-Mayorga G, Muñoz A (2013) Vitamin D is a multilevel repressor of Wnt/ß-catenin signaling in cancer cells. Cancers (Basel) 5:1242–1260. doi:10.3390/cancers5041242

    Article  Google Scholar 

  34. Deng Q, Andersson E, Hedlund E, Alekseenko Z, Coppola E, Panman L, Millonig JH, Brunet J-F, Ericson J, Perlmann T (2011) Specific and integrated roles of Lmx1a, Lmx1b and Phox2a in ventral midbrain development. Development (Cambridge, England) 138:3399–3408. doi:10.1242/dev.065482

  35. Veenvliet JV, dos Santos MT, Kouwenhoven WM, von Oerthel L, Lim JL, van der Linden AJ, Koerkamp MJ, Holstege FC et al (2013) Specification of dopaminergic subsets involves interplay of En1 and Pitx3. Development 140:4116–4116. doi:10.1242/dev.102731

    Article  CAS  Google Scholar 

  36. Romagnolo DF, Zempleni J, Selmin OI (2014) Nuclear receptors and epigenetic regulation: opportunities for nutritional targeting and disease prevention. Advances in nutrition (Bethesda, Md) 5:373–385. doi:10.3945/an.114.005868

  37. Kim K-S, Kim C-H, Hwang D-Y, Seo H, Chung S, Hong SJ, Lim J-K, Anderson T et al (2003) Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner. J Neurochem 85:622–634

    Article  CAS  PubMed  Google Scholar 

  38. Matsushita N, Okada H, Yasoshima Y, Takahashi K, Kiuchi K, Kobayashi K (2002) Dynamics of tyrosine hydroxylase promoter activity during midbrain dopaminergic neuron development. J Neurochem 82:295–304. doi:10.1046/j.1471-4159.2002.00972.x

    Article  CAS  PubMed  Google Scholar 

  39. Panman L, Papathanou M, Laguna A, Oosterveen T, Volakakis N, Acampora D, Kurtsdotter I, Yoshitake T et al (2014) Sox6 and Otx2 control the specification of substantia nigra and ventral tegmental area dopamine neurons. Cell Rep 8:1018–1025. doi:10.1016/j.celrep.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  40. Joksimovic M, Anderegg A, Roy A, Campochiaro L, Yun B, Kittappa R, McKay R, Awatramani R (2009) Spatiotemporally separable Shh domains in the midbrain define distinct dopaminergic progenitor pools. Proc Natl Acad Sci U S A 106:19185–19190. doi:10.1073/pnas.0904285106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Javoy-Agid F, Ploska A, Agid Y (1981) Microtopography of tyrosine hydroxylase, glutamic acid decarboxylase, and choline acetyltransferase in the substantia nigra and ventral tegmental area of control and Parkinsonian brains. J Neurochem 37:1218–1227

    Article  CAS  PubMed  Google Scholar 

  42. Cragg SJ, Rice ME, Greenfield SA (1997) Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. J Neurophysiol 77:863–873

    Article  CAS  PubMed  Google Scholar 

  43. Wang JY, Wu JN, Cherng TL, Hoffer BJ, Chen HH, Borlongan CV, Wang Y (2001) Vitamin D3 attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res 904:67–75. doi:10.1016/S0006-8993(01)02450-7

    Article  CAS  PubMed  Google Scholar 

  44. Sanchez B, Relova JL, Gallego R, Ben-Batalla I, Perez-Fernandez R (2009) 1,25-Dihydroxyvitamin D3 administration to 6-hydroxydopamine-lesioned rats increases glial cell line-derived neurotrophic factor and partially restores tyrosine hydroxylase expression in substantia nigra and striatum. J Neurosci Res 87:723–732. doi:10.1002/jnr.21878

    Article  CAS  PubMed  Google Scholar 

  45. Cass WA, Smith MP, Peters LE (2006) Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine. Ann N Y Acad Sci 1074:261–271. doi:10.1196/annals.1369.023

    Article  CAS  PubMed  Google Scholar 

  46. Puchacz E, Stumpf WE, Stachowiak EK, Stachowiak MK (1996) Vitamin D increases expression of the tyrosine hydroxylase gene in adrenal medullary cells. Brain Res Mol Brain Res 36:193–196

    Article  CAS  PubMed  Google Scholar 

  47. Cui X, Pertile R, Liu P, Eyles DW (2015) Vitamin D regulates tyrosine hydroxylase expression: N-cadherin a possible mediator. Neuroscience 304:90–100. doi:10.1016/j.neuroscience.2015.07.048

    Article  CAS  PubMed  Google Scholar 

  48. Pertile RAN, Cui X, Eyles DW (2016) Vitamin D signaling and the differentiation of developing dopamine systems. Neuroscience 333:193–203. doi:10.1016/j.neuroscience.2016.07.020

    Article  CAS  PubMed  Google Scholar 

  49. Hawes JE, Tesic D, Whitehouse AJ, Zosky GR, Smith JT, Wyrwoll CS (2015) Maternal vitamin D deficiency alters fetal brain development in the BALB/c mouse. Behav Brain Res 286:192–200. doi:10.1016/j.bbr.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  50. Kesby JP, Cui X, Ko P, McGrath JJ, Burne THJ, Eyles DW (2009) Developmental vitamin D deficiency alters dopamine turnover in neonatal rat forebrain. Neurosci Lett 461:155–158. doi:10.1016/j.neulet.2009.05.070

    Article  CAS  PubMed  Google Scholar 

  51. Kadkhodaei B, Alvarsson A, Schintu N, Ramsköld D, Volakakis N, Joodmardi E, Yoshitake T, Kehr J et al (2013) Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons. Proc Natl Acad Sci U S A 110:2360–2365. doi:10.1073/pnas.1221077110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Meyer U, Engler A, Weber L, Schedlowski M, Feldon J (2008) Preliminary evidence for a modulation of fetal dopaminergic development by maternal immune activation during pregnancy. Neuroscience 154:701–709. doi:10.1016/j.neuroscience.2008.04.031

    Article  CAS  PubMed  Google Scholar 

  53. Katunar MR, Saez T, Brusco A, Antonelli MC (2010) Ontogenetic expression of dopamine-related transcription factors and tyrosine hydroxylase in prenatally stressed rats. Neurotox Res 18:69–81. doi:10.1007/s12640-009-9132-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Health and Medical Research Council of Australia (NHMRC grant number APP1042259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darryl Walter Eyles.

Ethics declarations

All procedures were performed with approval from the Animal Ethics Committee of the University of Queensland (Animal Ethics Approval number: AE05580) and under the guidelines of the National Health and Medical Research Council of Australia.

Conflict of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, W., Hammond, L.A., Cotter, E. et al. Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon. Mol Neurobiol 55, 2443–2453 (2018). https://doi.org/10.1007/s12035-017-0497-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0497-3

Keywords