[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

Electroreduction of Carbon Dioxide on Copper-Based Electrodes: Activity of Copper Single Crystals and Copper–Gold Alloys

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The activity of copper single-crystal and copper–gold alloyed (Au1Cu99, Au10Cu90, Au20Cu80, Au50Cu50) electrodes for CO2 electroreduction has been investigated in aqueous phosphate buffer solutions by cyclic voltammetry and potentiostatic long-term electrolysis. In addition to H2, four species were identified in the gaseous phase by chromatography after electrolyses: CO, CH4, C2H4 and traces of C2H6. At copper electrodes, the major carbon-containing products are CO and CH4. Analysis of the data indicates that the fraction of methane increases in the order Cu (poly) < Cu (100) < Cu (111), whereas a concomitant decrease of the carbon monoxide fraction is observed. The selectivity of low-index faces towards methane formation is consistent with a mechanism involving CO(ads) and H(ads). Analytical information obtained after potentiostatic electrolyses at copper–gold alloys shows that the CO production increases markedly with the Au content, while the fraction of CH4 diminishes. Amongst all the examined electrodes, the Au50Cu50 alloy appears to be the most efficient substrate for the conversion of CO2 into carbon-containing gaseous products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Gattrell, N. Gupta, A. Co, Energy Convers Mgmt 48, 1255 (2007)

    Article  CAS  Google Scholar 

  2. C. Oloman, H. Li, Chem Sus Chem 1, 385 (2008)

    CAS  Google Scholar 

  3. E.E. Benson, C.P. Kubiak, A.J. Sathrum, J.M. Smieja, Chem Soc Rev 38, 89 (2009)

    Article  CAS  Google Scholar 

  4. E. Barton Cole, P.S. Lakkaraju, D.M. Rampulla, A.J. Morris, E. Abelev, A.B. Bocarsly, J Am Chem Soc 132, 11539 (2010)

    Article  CAS  Google Scholar 

  5. M. Rakowski Dubois, D.L. Dubois, Acc Chem Res 42, 1974 (2009)

    Article  CAS  Google Scholar 

  6. Y.B. Vassiliev, V.S. Bagotzky, N.V. Osetrova, O.A. Khazova, N.A. Mayorova, J Electroanal Chem 189, 271 (1985)

    Article  Google Scholar 

  7. Y.B. Vassiliev, V.S. Bagotzky, O.A. Khazova, N.A. Mayorova, J Electroanal Chem 189, 295 (1985)

    Article  Google Scholar 

  8. Y. Hori, K. Kikuchi, S. Suzuki, Chem Lett 1695 (1985)

  9. M. Gattrell, N. Gupta, A. Co, J Electroanal Chem 594, 1 (2006)

    Article  CAS  Google Scholar 

  10. J.J. Kim, D.P. Summers, K.W. Frese, J Electroanal Chem 245, 223 (1988)

    Article  CAS  Google Scholar 

  11. G. Kyriacou, A. Anagnostopoulos, J Electroanal Chem 322, 233 (1992)

    Article  CAS  Google Scholar 

  12. Y. Momose, K. Sato, O. Ohno, Surf Interface Anal 34, 615 (2002)

    Article  CAS  Google Scholar 

  13. Y. Hori, H. Wakebe, T. Tsukamoto, O. Koga, Surf Sci 335, 258 (1995)

    Article  CAS  Google Scholar 

  14. Y. Hori, I. Takahashi, O. Koga, N. Hoshi, J Phys Chem B 106, 15 (2002)

    Article  CAS  Google Scholar 

  15. I. Takahashi, O. Koga, N. Hoshi, Y. Hori, J Electroanal Chem 533, 135 (2002)

    Article  CAS  Google Scholar 

  16. Y. Hori, I. Takahashi, O. Koga, N. Hoshi, J Mol Catal A 199, 3 (2003)

    Article  Google Scholar 

  17. K.J.P. Schouten, Y. Kwon, C.J.M. van der Ham, Z. Qin, M.T.M. Koper, Chem Sci 2, 1902 (2011)

    Article  CAS  Google Scholar 

  18. Y. Hori, O. Koga, H. Yamazaki, T. Matsuo, Electrochim Acta 40, 2617 (1995)

    Article  CAS  Google Scholar 

  19. R.M. Hernandez, M. Kalaji, J Chem Soc Faraday Trans 92, 3957 (1996)

    Article  Google Scholar 

  20. S.K. Shaw, A. Berná, J.M. Feliu, R.J. Nichols, T. Jacob, D.J. Schiffrin, Phys Chem Chem Phys 13, 5242 (2011)

    Article  CAS  Google Scholar 

  21. A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Norskov, Energ Environ Sci 3, 1311 (2010)

    Article  CAS  Google Scholar 

  22. W.J. Durand, A.A. Peterson, F. Studt, F. Abild-Pedersen, J.K. Norskov, Surf Sci 605, 1354 (2011)

    Article  CAS  Google Scholar 

  23. A.A. Peterson, J.K. Norskov, J Phys Chem Lett 3, 251 (2012)

    Article  CAS  Google Scholar 

  24. M. Watanabe, M. Shibata, A. Katoh, T. Sakata, M. Azuma, J Electroanal Chem 305, 319 (1991)

    Article  CAS  Google Scholar 

  25. G. Kyriacou, A. Anagnostopoulos, J Electroanal Chem 328, 233 (1992)

    Article  CAS  Google Scholar 

  26. S. Pace, T. van Hoof, M. Hou, C. Buess-Herman, F. Reniers, Surf Interface Anal 36, 1078 (2004)

    Article  CAS  Google Scholar 

  27. Y. Hori, A. Murata, R. Takahashi, J Chem Soc Faraday Trans 185, 2309 (1989)

    Google Scholar 

  28. Y. Hori, A. Murata, Y. Yoshinami, J Chem Soc Faraday Trans 87, 125 (1991)

    Article  CAS  Google Scholar 

  29. S. Vollmer, G. Witte, C. Wöll, Catal Lett 77, 97 (2001)

    Article  CAS  Google Scholar 

  30. E. Santos, K. Pötting, A. Lundin, P. Quaino, W. Schmickler, Chem Phys Chem 11, 1491 (2010)

    Article  CAS  Google Scholar 

  31. K. Ohkawa, Y. Noguchi, S. Nakayama, K. Hashimoto, A. Fujishima, J Electroanal Chem 367, 165 (1994)

    Article  CAS  Google Scholar 

  32. M. Maeda, Y. Kitaguchi, S. Ikeda, K. Ito, J Electroanal Chem 238, 247 (1987)

    Article  CAS  Google Scholar 

  33. J.K. Norskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, J Electrochem Soc 152, J23 (2005)

    Article  CAS  Google Scholar 

  34. J.M. Gottfried, K.J. Schmidt, S.L.M. Schroeder, K. Christmann, Surf Sci 536, 206 (2003)

    Article  CAS  Google Scholar 

  35. P. Hollins, J. Pritchard, Surf Sci 89, 486 (1979)

    Article  CAS  Google Scholar 

  36. I. Bönicke, W. Kirstein, S. Spinzig, F. Thieme, Surf Sci 313, 231 (1994)

    Article  Google Scholar 

  37. P. Dubé, G.M. Brisard, J Electroanal Chem 582, 230 (2005)

    Article  Google Scholar 

  38. Y. Hori, R. Takahashi, Y. Yoshinami, A. Murata, J Phys Chem B 101, 7075 (1997)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thomas Doneux, Chargé de Recherche (postdoctoral researcher), and Jennifer Christophe (aspirant) gratefully acknowledge the financial support from the Fonds National de la Recherche Scientifique (F.R.S.-FNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Buess-Herman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christophe, J., Doneux, T. & Buess-Herman, C. Electroreduction of Carbon Dioxide on Copper-Based Electrodes: Activity of Copper Single Crystals and Copper–Gold Alloys. Electrocatalysis 3, 139–146 (2012). https://doi.org/10.1007/s12678-012-0095-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-012-0095-0

Keywords