[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

EEG signal processing for epilepsy seizure detection using 5-level Db4 discrete wavelet transform, GA-based feature selection and ANN/SVM classifiers

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Epilepsy is a neurobiological disease caused by abnormal electrical activity of the human brain. It is important to detect the epileptic seizures to help the epileptic patients. Using brain images for epilepsy diagnosis and seizure detection is time-consuming and complex process. Thus, electroencephalogram (EEG) signal analysis is focused in many papers of this field to detect the epileptic seizures. In addition, EEG signal acquisition is non-invasive and less painful for patients. However, raw EEG signal has many unrecognizable data not suitable for accurate diagnosis. Therefore, the raw EEG data must be analyzed while the features can be extracted. In this paper, discrete wavelet transform (DWT) is used to extract features of EEG signal by dividing it to five sub-bands. The proposed technique also includes genetic algorithm approach for selecting more effective features and finally, classification is performed by two strategies as artificial neural network (ANN) and support vector machine (SVM). The performance of two classifiers are compared where the simulation results show that the proposed strategy accuracy in detecting epilepsy seizures is better than other similar approaches in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acharya UR et al (2012) Automated diagnosis of epileptic EEG using entropies. Biomed Signal Process Control 7(4):401–408

    Article  Google Scholar 

  • Akbarian B, Erfanian A (2018) Automatic seizure detection based on nonlinear dynamical analysis of EEG signals and mutual information. Basic Clin Neurosci 9:227–240

    Article  Google Scholar 

  • Akter MS, Islam MR, Iimura Y et al (2020) Multiband entropy-based feature-extraction method for automatic identification of epileptic focus based on high-frequency components in interictal iEEG. Sci Rep 10:7044. https://doi.org/10.1038/s41598-020-62967-z

    Article  Google Scholar 

  • Al-Qerem A, Kharbat F, Nashwan S, Ashraf S, Blaou K (2020) General model for best feature extraction of EEG using discrete wavelet transform wavelet family and differential evolution. Int J Distrib Sens Netw. https://doi.org/10.1177/1550147720911009

    Article  Google Scholar 

  • Amin HU, Zuki YM, Fayyaz AR (2020) A novel approach based on wavelet analysis and arithmetic coding for automated detection and diagnosis of epileptic seizure in EEG signals using machine learning techniques. Biomed Signal Process Control 56:101707

    Article  Google Scholar 

  • Anand S, Jaiswal S, Ghosh P (2018) Epileptic seizure detection in EEG signal using discrete stationary wavelet-based stockwell transform. Majlesi J Electr Eng 13(1):55–63

    Google Scholar 

  • Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE (2001) Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E 64(6):061907

    Article  Google Scholar 

  • Bhattacharyya A, Pachori RB (2017) A multivariate approach for patientspecific EEG seizure detection using empirical wavelet transform. IEEE Trans Biomed Eng 64:2003–2015. https://doi.org/10.1109/TBME.2017.2650259

    Article  Google Scholar 

  • Chen G (2014) Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Syst Appl 41:2391–2394

    Article  Google Scholar 

  • Chen D, Wan S, Xiang J, Bao FS (2017) A high-performance seizure detection algorithm based on discrete wavelet transform (DWT) and EEG. PLoS ONE 12(3):e0173138. https://doi.org/10.1371/journal.pone.0173138

    Article  Google Scholar 

  • Dhiman R, Saini JS (2014) Genetic algorithms tuned expert model for detection of epileptic seizures from EEG signatures. Appl Soft Comput 19:8–17

    Article  Google Scholar 

  • Faust O, Acharya UR, Adeli H, Adeli A (2015) Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. Seizure 26:56–64

    Article  Google Scholar 

  • Gandhi T, Panigrahi B, Bhatia M, Anand S (2010) Expert model for detection of epileptic activity in EEG signature. Expert Syst Appl 37(4):3513–3520. https://doi.org/10.1016/j.eswa.2009.10.036

    Article  Google Scholar 

  • Gandhi T, Panigrahi BK, Anand S (2011) A comparative study of wavelet families for EEG signal classification. Neurocomputing 74(17):3051–3057

    Article  Google Scholar 

  • Ghaderyan P, Abbasi A, Sedaaghi MH (2014) An efficient seizure prediction method using KNN-based undersampling and linear frequency measures. J Neurosci Methods 232:134–142

    Article  Google Scholar 

  • Güler NF, Übeyli ED, Güler İ (2005) Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Syst Appl 29(3):506–514

    Article  Google Scholar 

  • Hassan AR, Subasi A (2016) Automatic identification of epileptic seizures from EEG signals using linear programming boosting. Comput Methods Progr Biomed 136:65–77

    Article  Google Scholar 

  • Herwig U, Satrapi P, Schonfeldt-lecuona A (2003) Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99

    Article  Google Scholar 

  • Huang Y-P, Basanta H, Kuo H-C, Huang A (2018) Health symptom checking system for elderly people using fuzzy analytic hierarchy process. Appl Syst Innov 1:10

    Article  Google Scholar 

  • Ibrahim S, Djemal R, Alsuwailem A (2018) “Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis. Biocybern Biomed Eng 38(1):16–26

    Article  Google Scholar 

  • Jain R, Khan I, Nagpal K (2018) Identification of structural lesion using a 3-Tesla MRI in partial onset epilepsy with a normal CT scan: a perspective of a tertiary centre in Northern India. Indian J Med Spec 9(4):187–191

    Article  Google Scholar 

  • Joshi V, Pachori RB, Vijesh A (2014) Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomed Signal Process Control 9:1–5

    Article  Google Scholar 

  • Kaya Y, Ertuğrul ÖF (2018) A stable feature extraction method in classification epileptic EEG signals. Australas Phys Eng Sci Med 41(3):721–730

    Article  Google Scholar 

  • Kumar Y, Dewal ML, Anand RS (2014) Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 133:271–279

    Article  Google Scholar 

  • Kumar N, Alam K, Siddiqi AH (2017) Wavelet transform for classification of EEG signal using SVM and ANN. Biomed Pharmacol J 10(4):2061–2069

    Article  Google Scholar 

  • Martinez-del-Rincon J, Santofimia MJ, del Toro X, Barba J, Romero F, Navas P, Lopez JC (2017) Non-linear classifiers applied to EEG analysis for epilepsy seizure detection. Expert Syst Appl 86:99–112

    Article  Google Scholar 

  • Miyazaki T et al (2020) Visualization of AMPA receptors in living human brain with positron emission tomography. Nat Med. https://doi.org/10.1038/s41591-019-0723-9

    Article  Google Scholar 

  • Moctezuma LA, Molinas M (2019) Classification of low-density EEG epileptic seizures by energy and fractal features based on EMD. J Biomed Res 34:1–11. https://doi.org/10.7555/JBR.33.20190009

    Article  Google Scholar 

  • Moctezuma L, Molinas M (2020) EEG channel-selection method for epileptic-seizure classification based on multi-objective optimization. Front Neurosci 14:593. https://doi.org/10.3389/fnins.2020.00593

    Article  Google Scholar 

  • Nabil D, Benali R, Bereksi Reguig F (2020) Epileptic seizure recognition using EEG wavelet decomposition based on nonlinear and statistical features with support vector machine classification. Biomed Eng Biomedizinische Technik 65(2):133–148. https://doi.org/10.1515/bmt-2018-0246

    Article  Google Scholar 

  • Osorio I, Zaveri HP, Frei MG, Arthurs S (2011) Epilepsy: The intersection of neurosciences, biology, mathematics, engineering, and physics, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Pachori RB, Patidar S (2014) Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Comput Methods Progr Biomed 113(2):494–502

    Article  Google Scholar 

  • Salem O, Naseem A, Mehaoua A (2014) Epileptic seizure detection from EEG signal using discrete wavelet transform and ant colony classifier. In: 2014 IEEE international conference on communications (ICC), Sydney, NSW, pp 3529–3534. https://doi.org/10.1109/ICC.2014.6883868

  • Satapathy SK, Dehuri S, Jagadev AK (2017) EEG signal classification using PSO trained RBF neural network for epilepsy identification. Inform Med Unlocked 6:1–11

    Article  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 5:379–423

    Article  MathSciNet  Google Scholar 

  • Sharaf AI, El-Soud MA, El-Henawy IM (2018) An automated approach for epilepsy detection based on tunable Q-wavelet and firefly feature selection algorithm. Int J Biomed Imaging 2018:12. https://doi.org/10.1155/2018/5812872

    Article  Google Scholar 

  • Sharma M, Dhere A, Pachori RB, Acharya UR (2017) An automatic detection of focal EEG signals using new class of time–frequency localized orthogonal wavelet filter banks. Knowl Based Syst 118:217–227

    Article  Google Scholar 

  • Sharmila A, Mahalakshmi P (2017) Wavelet-based feature extraction for classification of epileptic seizure EEG signal. J Med Eng Technol 41(8):670–680. https://doi.org/10.1080/03091902.2017.1394388

    Article  Google Scholar 

  • Solaija MSJ, Saleem S, Khurshid K, Hassan SA, Kamboh AM (2018) Dynamic mode decomposition based epileptic seizure detection from scalp EEG. IEEE Access 6:38683–38692. https://doi.org/10.1109/ACCESS.2018.2853125

    Article  Google Scholar 

  • Tsiouris K, Tzallas A, Markoula S, Koutsouris D, Konitsiotis S, Fotiadis D (2016) A review of automated methodologies for the detection of epileptic episodes using long-term EEG signals. Handbook of research on trends in the diagnosis and treatment of chronic conditions. IGI Global, Pennsylvania, pp 231–261

    Chapter  Google Scholar 

  • Türk Ö, Şeker M, Akpolat V, Özerdem MS (2017) Classification of mental task EEG records using Hjorth parameters. In: 2017 25th signal processing and communications applications conference (SIU), Antalya, pp 1–4. https://doi.org/10.1109/SIU.2017.7960608

  • Tzimourta KD, Astrakas LG, Tsipouras MG, Giannakeas N, Tzallas AT, Konitsiotis S (2017) Wavelet Based Classification of Epileptic Seizures in EEG Signals. In: 2017 IEEE 30th international symposium on computer-based medical systems (CBMS), Thessaloniki, pp 35–39.

  • Vani S, Suresh GR, Balakumaran T, Ashawise C (2019) EEG signal analysis for automated epilepsy seizure detection using wavelet transform and artificial neural network. J Med Imaging Health Inform 9:1301–1306. https://doi.org/10.1166/jmihi.2019.2713

    Article  Google Scholar 

  • Vapnik V, Cortes C (1995) Support vector networks. Mach Learn 20:273–297

    MATH  Google Scholar 

  • Wang L, Xue W, Li Y, Luo M, Huang J, Cui W, Huang C (2017) Automatic epileptic seizure detection in EEG signals using multi-domain feature extraction and nonlinear analysis. Entropy 19:222

    Article  Google Scholar 

  • Wiest R, Beisteiner R (2019) Recent developments in imaging of epilepsy. Curr Opin Neurol 32(4):530–538. https://doi.org/10.1097/WCO.0000000000000704

    Article  Google Scholar 

  • Xiang J, Maue E, Fan Y, Qi L, Mangano FT, Greiner H, Tenney J (2020) Kurtosis and skewness of high-frequency brain signals are altered in paediatric epilepsy. Brain Commun 2(1):fcaa036

    Article  Google Scholar 

  • Xuan M, Tuong K, Huy Q, Son N (2020) Magnetic resonance imaging findings and their association with electroencephalogram data in children with partial epilepsy. Cureus 12(5):e7922

    Google Scholar 

  • Zhang T, Chen W, Li M (2018a) Generalized Stockwell transform and SVD-based epileptic seizure detection in EEG using random forest. Biocybern Biomed Eng 38:519–534. https://doi.org/10.1016/j.bbe.2018.03.007

    Article  Google Scholar 

  • Zhang Y, Yang S, Liu Y, Zhang Y, Han B, Zhou F (2018b) Integration of 24 feature types to accurately detect and predict seizures using scalp EEG signals. Sensors 18:1372. https://doi.org/10.3390/s18051372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulhamid Zahedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidvar, M., Zahedi, A. & Bakhshi, H. EEG signal processing for epilepsy seizure detection using 5-level Db4 discrete wavelet transform, GA-based feature selection and ANN/SVM classifiers. J Ambient Intell Human Comput 12, 10395–10403 (2021). https://doi.org/10.1007/s12652-020-02837-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02837-8

Keywords

Navigation