[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Naturally Occurring Flavonoids Against Human Norovirus Surrogates

  • Original Paper
  • Published:
Food and Environmental Virology Aims and scope Submit manuscript

Abstract

Naturally occurring plant-derived flavonoids are reported to have antibacterial, antiviral, and pharmacological activities. The objectives of this study were to determine the antiviral effects of four flavonoids (myricetin, l-epicatechin, tangeretin, and naringenin) on the infectivity of food borne norovirus surrogates after 2 h at 37 °C. The lab-culturable surrogates, feline calicivirus (FCV-F9) at titers of ~7 log10 PFU/ml (high titer) or ~5 log10 PFU/ml (low titer) and murine norovirus (MNV-1) at ~5 log10 PFU/ml, were mixed with equal volumes of myricetin, l-epicatechin, tangeretin, or naringenin at concentrations of 0.5 or 1 mM, and incubated for 2 h at 37 °C. Treatments of viruses were neutralized in cell culture medium containing 10 % heat-inactivated fetal bovine serum, serially diluted, and plaque assayed. Each treatment was replicated thrice and assayed in duplicate. FCV-F9 (low titer) was not found to be reduced by tangeretin or naringenin, but was reduced to undetectable levels by myricetin at both concentrations. Low titer FCV-F9 was also decreased by 1.40 log10 PFU/ml with l-epicatechin at 0.5 mM. FCV-F9 at high titers was decreased by 3.17 and 0.72 log10 PFU/ml with myricetin and l-epicatechin at 0.5 mM, and 1.73 log10 PFU/ml with myricetin at 0.25 mM, respectively. However, MNV-1 showed no significant inactivation by the four tested treatments. The antiviral effects of the tested flavonoids are dependent on the virus type, titer, and dose. Further research will focus on understanding the antiviral mechanism of myricetin and l-epicatechin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Cheesbrough, J. S., Green, J., Gallimore, C. I., Wright, P. A., & Brown, D. W. G. (2000). Widespread environmental contamination with Norwalk-like viruses (NLV) detected in a prolonged hotel outbreak of gastroenteritis. Epidemiology and Infection, 125(1), 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, P. C., & Wong, G. (1996). Honey bee propolis: Prospects in medicine. Bee World, 77(1), 8–15.

    Google Scholar 

  • Chiang, L. C., Chiang, W., Liu, M. C., & Lin, C. C. (2003). In vitro antiviral activities of Caesalpinia pulcherrima and its related flavonoids. Journal of Antimicrobial Chemotherapy, 52(2), 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Chu, S. C., Hsieh, Y. S., & Lin, J. Y. (1992). Inhibitory effects of flavonoids on moloney murine leukemia virus reverse transcriptase activity. Journal of Natural Products, 55(2), 179–183.

    Article  PubMed  CAS  Google Scholar 

  • Cody, V., Middleton, E., & Harborne, J. B. (Eds.). (1986). Plant flavonoids in biology and medicine: Biochemical, pharmacological, and structure–activity relationships. New York: Alan R. Liss, Inc.

    Google Scholar 

  • Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356.

    Article  PubMed  CAS  Google Scholar 

  • Debiaggi, M., Tateo, F., Pagani, L., Luini, M., & Romero, E. (1990). Effects of propolis flavonoids on virus infectivity and replication. Microbiologica, 13(3), 207–213.

    PubMed  CAS  Google Scholar 

  • D’Souza, D. H., Sair, A., Williams, K., Papafragkou, E., Jean, J., Moore, C., et al. (2006). Persistence of caliciviruses on environmental surfaces and their transfer to food. International Journal of Food Microbiology, 108(1), 84–91.

    Article  PubMed  Google Scholar 

  • D’Souza, D. H., & Su, X. W. (2010). Efficacy of chemical treatments against murine norovirus, Feline calicivirus, and MS2 Bacteriophage. Foodborne Pathogens and Disease, 7(3), 319–326.

    Article  PubMed  Google Scholar 

  • El Gharras, H. (2009). Polyphenols: Food sources, properties and applications—a review. International Journal of Food Science & Technology, 44(12), 2512–2518.

    Article  Google Scholar 

  • Jassim, S. A. A., & Naji, M. A. (2003). Novel antiviral agents: A medicinal plant perspective. Journal of Applied Microbiology, 95(3), 412–427.

    Article  PubMed  CAS  Google Scholar 

  • Kuusi, M., Nuorti, J. P., Maunula, L., Minh, N. N. T., Ratia, M., Karlsson, J., et al. (2002). A prolonged outbreak of Norwalk-like calicivirus (NLV) gastroenteritis in a rehabilitation centre due to environmental contamination. Epidemiology and Infection, 129(1), 133–138.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, H. J., Kim, H. H., Ryu, Y. B., Kim, J. H., Jeong, H. J., Lee, S. W., et al. (2010). In vitro anti-rotavirus activity of polyphenol compounds isolated from the roots of Glycyrrhiza uralensis. Bioorganic & Medicinal Chemistry, 18(21), 7668–7674.

    Article  CAS  Google Scholar 

  • Liu, A. L., Wang, H. D., Lee, S. M. Y., Wang, Y. T., & Du, G. H. (2008). Structure-activity relationship of flavonoids as influenza virus neuraminidase inhibitors and their in vitro anti-viral activities. Bioorganic & Medicinal Chemistry, 16(15), 7141–7147.

    Article  CAS  Google Scholar 

  • Lyu, S. Y., Rhim, J. Y., & Park, W. B. (2005). Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Archives of Pharmacal Research, 28(11), 1293–1301.

    Article  PubMed  CAS  Google Scholar 

  • Matias, A. A., Serra, A. T., Silva, A. C., Perdigao, R., Ferreira, T. B., Marcelino, I., et al. (2010). Portuguese winemaking residues as a potential source of natural anti-adenoviral agents. International Journal of Food Sciences and Nutrition, 61(4), 357–368.

    Article  PubMed  CAS  Google Scholar 

  • Mead, P. S., Slutsker, L., Dietz, V., McCaig, L. F., Bresee, J. S., Shapiro, C., et al. (1999). Food-related illness and death in the United States. Emerging Infectious Diseases, 5(5), 607–625.

    Article  PubMed  CAS  Google Scholar 

  • Mukoyama, A., Ushijima, H., Nishimura, S., Koike, H., Toda, M., Hara, Y., et al. (1991). Inhibition of rotavirus and enterovirus infection by tea extract. Japanese Journal of Medical Science and Biology, 44(4), 181–186.

    PubMed  CAS  Google Scholar 

  • Ramachandran, K. V. (1956). On the Tukey test for the equality of means and the HARTLEY test for the equality of variances. Annals of Mathematical Statistics, 27(3), 825–831.

    Article  Google Scholar 

  • Regal, R. R. (1986). PC statistician PC ANOVA. American Statistician, 40(2), 164–167.

    Article  Google Scholar 

  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., et al. (2011). Foodborne illness acquired in the United States–major pathogens. Emerging Infectious Disease, 17(1), 7–15.

    Google Scholar 

  • Siebenga, J. J., Vennema, H., Zheng, D. P., Vinje, J., Lee, B. E., Pang, X. L., et al. (2009). Norovirus illness is a global problem: Emergence and spread of Norovirus GII.4 variants, 2001–2007. Journal of Infectious Diseases, 200, 802–812.

    Article  PubMed  Google Scholar 

  • Su, X., & D’Souza, D. H. (2011). Grape seed extract for the control of human enteric viruses. Applied Environmental Microbiology, 77, 3982–3987.

    Article  CAS  Google Scholar 

  • Su, X., Howell, A. B., & D’Souza, D. H. (2010a). The effect of cranberry juice and cranberry proanthocyanidins on the infectivity of human enteric viral surrogates. Food Microbiology, 27(4), 535–540.

    Article  PubMed  CAS  Google Scholar 

  • Su, X. W., Sangster, M. Y., & D’Souza, D. H. (2010b). In Vitro Effects of Pomegranate Juice and Pomegranate Polyphenols on Foodborne Viral Surrogates. Foodborne Pathogens and Disease, 7(12), 1473–1479.

    Article  PubMed  CAS  Google Scholar 

  • Tait, S., Salvati, A. L., Desideri, N., & Fiore, L. (2006). Antiviral activity of substituted homoisoflavonoids on enteroviruses. Antiviral Research, 72(3), 252–255.

    Article  PubMed  CAS  Google Scholar 

  • Wobus, C. E., Karst, S. M., Thackray, L. B., Chang, K. O., Sosnovtsev, S. V., Belliot, G., et al. (2004). Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biology, 2(12), 2076–2084.

    Article  CAS  Google Scholar 

  • Yao, L. H., Jiang, Y. M., Shi, J., Tomas-Barberan, F. A., Datta, N., Singanusong, R., et al. (2004). Flavonoids in food and their health benefits. Plant Foods for Human Nutrition, 59(3), 113–122.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris H. D’Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, X., D’Souza, D.H. Naturally Occurring Flavonoids Against Human Norovirus Surrogates. Food Environ Virol 5, 97–102 (2013). https://doi.org/10.1007/s12560-013-9106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12560-013-9106-4

Keywords

Navigation