[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Block matching based 3D filtering methods have achieved great success in image denoising tasks. However, the manually set filtering operation could not well describe a good model to transform noisy images to clean images. In this paper, we introduce convolutional neural network (CNN) for the 3D filtering step to learn a well fitted model for denoising. With a trainable model, prior knowledge is utilized for better mapping from noisy images to clean images. This block matching and CNN joint model (BMCNN) could denoise images with different sizes and different noise intensity well, especially images with high noise levels. The experimental results demonstrate that among all competing methods, this method achieves the highest peak signal to noise ratio (PSNR) when denoising images with high noise levels (σ > 40), and the best visual quality when denoising images with all the tested noise levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In Proc. the 6th Int. Conf. Computer Vision, January 1998, pp.839-846.

  2. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Analysis and Machine Intelligence, 1990, 12(7): 629-639.

  3. Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1/2/3/4): 259-268.

  4. Osher S, Burger M, Goldfarb D, Xu J J, Yin W T. An iterative regularization method for total variation-based image restoration. Multiscale Modeling & Simulation, 2005, 4(2): 460-489.

    Article  MathSciNet  MATH  Google Scholar 

  5. Donoho D L. De-noising by soft-thresholding. IEEE Trans. Information Theory, 1995, 41(3): 613-627.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang S G, Yu B, Vetterli M. Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Processing, 2000, 9(9): 1532-1546.

    Article  MathSciNet  MATH  Google Scholar 

  7. Starck J L, Candes E J, Donoho D L. The curvelet transform for image denoising. IEEE Trans. Image Processing, 2002, 11(6): 670-684.

    Article  MathSciNet  MATH  Google Scholar 

  8. Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Processing, 2006, 15(12): 3736-3745.

    Article  MathSciNet  Google Scholar 

  9. Dong W S, Zhang L, Shi G M, Li X. Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Processing, 2013, 22(4): 1620-1630.

    Article  MathSciNet  MATH  Google Scholar 

  10. Buades A, Coll B, Morel J M. A non-local algorithm for image denoising. In Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, June 2005, pp.60-65.

  11. Gu S H, Zhang L, Zuo W M, Feng X C. Weighted nuclear norm minimization with application to image denoising. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2014.

  12. Jain V, Seung H S. Natural image denoising with convolutional networks. In Proc. the 21st Int. Conf. Neural Information Processing Systems, December 2008, pp.769-776.

  13. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. Journal of Machine Learning Research, 2010, 11: 3371-3408.

    MathSciNet  MATH  Google Scholar 

  14. Xie J Y, Xu L L, Chen E H. Image denoising and inpainting with deep neural networks. In Proc. the 25th Int. Conf. Neural Information Processing Systems, December 2012, pp.341-349.

  15. Vemulapalli R, Tuzel O, Liu M Y. Deep Gaussian conditional random field network: A model-based deep network for discriminative denoising. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2016.

  16. Zhang K, Zuo W M, Chen Y J, Meng D Y, Zhang L. Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE Trans. Image Processing, 2017, 26(7): 3142-3155.

    Article  MathSciNet  Google Scholar 

  17. Peyré G, Bougleux S, Cohen L. Non-local regularization of inverse problems. In Proc. the 10th European Conf. Computer Vision, October 2008, pp.57-68.

  18. Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Processing, 2007, 16(8): 2080-2095.

    Article  MathSciNet  Google Scholar 

  19. Zhang L, Dong W S, Zhang D, Shi G M. Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recognition, 2010, 43(4): 1531-1549.

    Article  MATH  Google Scholar 

  20. Dong W S, Li X, Zhang L, Shi G M. Sparsity-based image denoising via dictionary learning and structural clustering. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2011, pp.457-464.

  21. Liu H F, Xiong R Q, Zhang J, Gao W. Image denoising via adaptive soft-thresholding based on non-local samples. In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2015, pp.484-492.

  22. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553): 436-444.

    Article  Google Scholar 

  23. Burger H C, Schuler C J, Harmeling S. Image denoising: Can plain neural networks compete with BM3D? In Proc. IEEE Conf. Computer Vision and Pattern Recognition, June 2012, pp.2392-2399.

  24. Li H M. Deep learning for image denoising. Int. Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 7(3): 171-180.

  25. Agostinelli F, Anderson M R, Lee H. Adaptive multicolumn deep neural networks with application to robust image denoising. In Proc. the 26th Int. Conf. Neural Information Processing Systems, December 2013, pp.1493-1501.

  26. MacQueen J. Some methods for classification and analysis of multivariate observations. In Proc. the 5th Berkeley Symp. Mathematical Statistics and Probability, June 1967, pp.281-297.

  27. Xie X L, Beni G. A validity measure for fuzzy clustering. IEEE Trans. Pattern Analysis and Machine Intelligence, 1991, 13(8): 841-847.

  28. Gersho A. On the structure of vector quantizers. IEEE Trans. Information Theory, 1982, 28(2): 157-166.

    Article  MathSciNet  Google Scholar 

  29. Chen Q,Wu D P. Image denoising by bounded block matching and 3D filtering. Signal Processing, 2010, 90(9): 2778-2783.

    Article  MATH  Google Scholar 

  30. Ahmed N, Natarajan T, Rao K R. Discrete cosine transform. IEEE Trans. Computers, 1974, C-23(1): 90-93.

    Article  MathSciNet  MATH  Google Scholar 

  31. Nair V, Hinton G E. Rectified linear units improve restricted Boltzmann machines. In Proc. the 27th Int. Conf. Machine Learning, June 2010, pp.807-814.

  32. Harris F J. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. the IEEE, 1978, 66(1): 51-83.

    Article  Google Scholar 

  33. Wang Z, Bovik A C, Sheikh H R, Simoncelli E P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Processing, 2004, 13(4): 600-612.

    Article  Google Scholar 

  34. Schmitt J M, Xiang S H, Yung K M. Speckle in optical coherence tomography. Journal of Biomedical Optics, 1999, 4(1): 95-105.

    Article  Google Scholar 

  35. Fang L Y, Li S T, Nie Q, Izatt J A, Toth C A, Farsiu S. Sparsity based denoising of spectral domain optical coherence tomography images. Biomedical Optics Express, 2012, 3(5): 927-942.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zai-Liang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, BJ., Guo, YD., He, Q. et al. 3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising. J. Comput. Sci. Technol. 33, 838–848 (2018). https://doi.org/10.1007/s11390-018-1859-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-018-1859-7

Keywords

Navigation