[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Population Shape Regression from Random Design Data

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Regression analysis is a powerful tool for the study of changes in a dependent variable as a function of an independent regressor variable, and in particular it is applicable to the study of anatomical growth and shape change. When the underlying process can be modeled by parameters in a Euclidean space, classical regression techniques (Hardle, Applied Nonparametric Regression, 1990; Wand and Jones, Kernel Smoothing, 1995) are applicable and have been studied extensively. However, recent work suggests that attempts to describe anatomical shapes using flat Euclidean spaces undermines our ability to represent natural biological variability (Fletcher et al., IEEE Trans. Med. Imaging 23(8), 995–1005, 2004; Grenander and Miller, Q. Appl. Math. 56(4), 617–694, 1998).

In this paper we develop a method for regression analysis of general, manifold-valued data. Specifically, we extend Nadaraya-Watson kernel regression by recasting the regression problem in terms of Fréchet expectation. Although this method is quite general, our driving problem is the study anatomical shape change as a function of age from random design image data.

We demonstrate our method by analyzing shape change in the brain from a random design dataset of MR images of 97 healthy adults ranging in age from 20 to 79 years. To study the small scale changes in anatomy, we use the infinite dimensional manifold of diffeomorphic transformations, with an associated metric. We regress a representative anatomical shape, as a function of age, from this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Beg, M., Miller, M., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2).

  • Beg, M. F. (2003). Variational and computational methods for flows of diffeomorphisms in image matching and growth in computational anatomy. PhD thesis, The Johns Hopkins University.

  • Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157.

    Article  Google Scholar 

  • Bhattacharya, R., & Patrangenaru, V. (2002). Nonparametric estimation of location and dispersion on Riemannian manifolds. Journal of Statistical Planning and Inference, 108, 23–36.

    Article  MATH  MathSciNet  Google Scholar 

  • Bhattacharya, R., & Patrangenaru, V. (2003). Large sample theory of intrinsic and extrinsic sample means on manifolds I. Annals of Statistics, 31(1), 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Bingham, C. (1974). An antipodally symmetric distribution on the sphere. The Annals of Statistics, 2(6), 1201–1225.

    Article  MATH  MathSciNet  Google Scholar 

  • Buss, S. R., & Fillmore, J. P. (2001). Spherical averages and applications to spherical splines and interpolation. ACM Transactions on Graphics, 20(2), 95–126.

    Article  Google Scholar 

  • Clatz, O., Sermesant, M., Bondiau, P. Y., Delingette, H., Warfield, S. K., Malandain, G., & Ayache, N. (2005). Realistic simulation of the 3D growth of brain tumors in MR images coupling diffusion with mass effect. IEEE Transactions on Medical Imaging, 24(10), 1334–1346.

    Article  Google Scholar 

  • Dupuis, P., & Grenander, U. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics, LVI(3), 587–600.

    MathSciNet  Google Scholar 

  • Fletcher, P. T., Joshi, S., Ju, C., & Pizer, S. M. (2004). Principal geodesic analysis for the study of nonliner statistics of shape. IEEE Transactions on Medical Imaging, 23(8), 995–1005.

    Article  Google Scholar 

  • Fréchet, M. (1948). Les elements aleatoires de nature quelconque dans un espace distancie. Annales de L’Institut Henri Poincare, 10, 215–310.

    Google Scholar 

  • Grenander, U., & Miller, M. I. (1998). Computational anatomy: An emerging discipline. Quarterly of Applied Mathematics, 56(4), 617–694.

    MATH  MathSciNet  Google Scholar 

  • Guttmann, C., Jolesz, F., Kikinis, R., Killiany, R., Moss, M., Sandor, T., & Albert, M. (1998). White matter changes with normal aging. Neurology, 50(4), 972–978.

    Google Scholar 

  • Hall, P., & Marron, J. S. (1991). Local minima in cross-validation functions. Journal of the Royal Statistical Society, Series B, 53(1), 245–252.

    MATH  MathSciNet  Google Scholar 

  • Hardle, W. (1990). Applied nonparametric regression. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jones, M. C., Marron, J. S., & Sheather, S. J. (1996). A brief survey of bandwidth selection for density estimation. Journal of the American Statistical Association, 91(433), 401–407.

    Article  MATH  MathSciNet  Google Scholar 

  • Joshi, S., Davis, B., Jomier, M., & Gerig, G. (2004). Unbiased diffeomorphic atlas construction for computational anatomy. NeuroImage, 23, S151–S160. (Supplemental issue on Mathematics in Brain Imaging).

    Article  Google Scholar 

  • Joshi, S. C., & Miller, M. I. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370.

    Article  MATH  MathSciNet  Google Scholar 

  • Jupp, P., & Mardia, K. (1989). A unified view of the theory of directional statistics, 1975–1988. International Statistical Review, 57(3), 261–294.

    Article  MATH  Google Scholar 

  • Jupp, P. E., & Kent, J. T. (1987). Fitting smooth paths to spherical data. Applied Statistics, 36(1), 34–46.

    Article  MATH  MathSciNet  Google Scholar 

  • Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communications on Pure and Applied Mathematics, 30, 509–541.

    Article  MATH  MathSciNet  Google Scholar 

  • Kendall, D. G. (1984). Shape manifolds, Procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 18–121.

    Google Scholar 

  • Le, H., & Kendall, D. (1993). The Riemannian structure of Euclidean shape spaces: A novel environment for statistics. The Annals of Statistics, 21(3), 1225–1271.

    Article  MATH  MathSciNet  Google Scholar 

  • Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (1999). Automated model-based tissue classification of mr images of the brain. IEEE Transactions on Medical Imaging, 18(10), 897–908.

    Article  Google Scholar 

  • Loader, C. R. (1999). Bandwidth selection: Classical or plug-in? The Annals of Statistics, 27(2), 415–438.

    Article  MATH  MathSciNet  Google Scholar 

  • Lorenzen, P., Prastawa, M., Davis, B., Gerig, G., Bullitt, E., & Joshi, S. (2006). Multi-modal image set registration and atlas formation. Medical Image Analysis, 10(3), 440–451.

    Article  Google Scholar 

  • Matsumae, M., Kikinis, R., Mórocz, I., Lorenzo, A., Sándor, T., Sándor, T., Albert, M., Black, P., & Jolesz, F. (1996). Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging. Journal of Neurosurgery, 84, 982–991.

    Article  Google Scholar 

  • Miller, M. (2004). Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage, 23, S19–S33.

    Article  Google Scholar 

  • Miller, M., & Younes, L. (2001). Group actions, homeomorphisms, and matching: A general framework. International Journal of Computer Vision, 41, 61–84.

    Article  MATH  Google Scholar 

  • Miller, M., Banerjee, A., Christensen, G., Joshi, S., Khaneja, N., Grenander, U., & Matejic, L. (1997). Statistical methods in computational anatomy. Statistical Methods in Medical Research, 6, 267–299.

    Article  Google Scholar 

  • Miller, M. I., Trouve, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405.

    Article  Google Scholar 

  • Mortamet, B., Zeng, D., Gerig, G., Prastawa, M., & Bullitt, E. (2005). Effects of healthy aging measured by intracranial compartment volumes using a designed mr brain database. In Lecture notes in computer science (LNCS): Vol. 3749. Medical image computing and computer assisted intervention (MICCAI) (pp. 383–391).

  • Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications, 10, 186–190.

    Article  Google Scholar 

  • Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25, 127–154.

    Article  MathSciNet  Google Scholar 

  • Prastawa, M., Bullitt, E., Ho, S., & Gerig, G. (2004). A brain tumor segmentation framework based on outlier detection. Medical Image Analysis, 8(3), 275–283.

    Article  Google Scholar 

  • Thompson, P. M., Giedd, J. N., Woods, R. P., MacDonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774), 190–193. doi:10.1038/35004593.

    Article  Google Scholar 

  • Trouvé, A., & Younes, L. (2005). Metamorphoses through lie group action. Foundations of Computational Mathematics, 5(2), 173–198.

    Article  MATH  MathSciNet  Google Scholar 

  • Wand, M. P., & Jones, M. C. (1995). Kernel smoothing : Vol. 60. Monographs on statistics and applied probability. London: Chapman & Hall/CRC.

    Google Scholar 

  • Watson, G. S. (1964). Smooth regression analysis. Sankhya, 26, 101–116.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad C. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, B.C., Fletcher, P.T., Bullitt, E. et al. Population Shape Regression from Random Design Data. Int J Comput Vis 90, 255–266 (2010). https://doi.org/10.1007/s11263-010-0367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0367-1

Keywords

Navigation