Abstract
We integrate a model for filter response statistics of natural images into a variational framework for image segmentation. Incorporated in a sound probabilistic distance measure, the model drives level sets toward meaningful segmentations of complex textures and natural scenes. Despite its enhanced descriptive power, our approach preserves the efficiency of level set based segmentation since each region comprises two model parameters only. Analyzing thousands of natural images we select suitable filter banks, validate the statistical basis of our model, and demonstrate that it outperforms variational segmentation methods using second-order statistics.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Belongie, S., Carson, C., Greenspan, H., and Malik, J. 1998. Color- and texture-based image segmentation using EM and its application to content-based image retrieval. In Proc. of the ICCV.
Brodatz, P. 1966. Textures: A Photographic Album for Artists and Designers. Dover Publications: New York.
Buccigrossi, R.W. and Simoncelli, E.P. 1999. Image compression via joint statistical characterization in the wavelet domain. IEEE Trans. on Image Proc., 8(12):1688–1700.
Caselles, V., Kimmel, R., and Sapiro. G. 1997. Geodesic active contours. Int. J. of Comp. Vision, 22(1):61–79.
Chan, T.F. and Vese, L.A. 2001. Active contours without edges. IEEE Trans. on Image Proc., 10(2):266–277.
Cremers, D., Sochen, N., and Schnörr, C. 2004. Dynamic labeling for variational recognition-driven image segmentation. In Proc. of the ECCV (to appear).
Fowlkes, C., Belongie, S., Chung, F., and Malik, J. 2004. Spectral grouping usingthe Nyström method. IEEE Trans. Patt. Anal. Mach. Intell., 26(3):214–225.
Freeman, W.T. and Adelson, E.H. 1991. The design and use of steerable filters. IEEE Trans. Patt. Anal. Mach. Intell., 13(9):891–906.
Geusebroek, J.M. and Smeulders, A.W.M. 2003. Fragmentation in the vision of scenes. In Proc. of the ICCV, vol. 1, pp. 130–135.
GMBV. 2002. First international workshop on generative-model-based vision (GMBV2002), in conjunction with ECCV 2002. http://www.diku.dk/publikationer/tekniske. rapporter/2002/02-01/, Copenhagen, Denmark.
Hansen, M.H. and Yu, B. 2001. Model selection and the principle of minimum description length. J. of the Americ. Stat. Assoc., 96(454):746–774.
Heeger, D.J. and Bergen, J.R. 1995. Pyramid-based texture analysis/synthesis. In Proc. of SIGGRAPH, pp. 229–238.
Huang, J. and Mumford, D. 1999. Statistics of natural images and models. In Proc. of the ICCV, vol. 1, pp. 541–547.
Jehan-Besson, S., Barlaud, M., and Aubert, G. 2003. DREAM2S: Deformable regions driven by an Eulerian accurate minimization method for image and video segmentations. Int. J. of Comp. Vision, 53(1):45–70.
Joshi, R.L., Crump, V.J., and Fischer, T.R. 1995. Image subband coding using arithmetic coded trellis coded quantization. IEEE Trans. on Circuits and Systems for Video Technology, 5(6):515–523.
Keuchel, J., Schnörr, C., Schellewald, C., and Cremers, D. 2003. Binary partitioning, perceptual grouping, and restoration with semidefinite programming. IEEE Trans. Patt. Anal. Mach. Intell., 25(11):1364–1379.
Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., and Yezzi, A.J. 1995. Gradient flows and geometric active contour models. In Proc. of the ICCV, pp. 810–815.
Leclerc, Y.G. 1989. Constructing simple stable descriptions for image partitioning. Int. J. of Comp. Vision, 3(1):73–102.
Liu, X. and Wang, D. 2000. Texture classification using spectral histograms. Technical report, Dept. of Comp. and Inform. Science, Ohio State University, Columbus, OH, USA.
LoPresto, S.M. and Ramchandran, K. 1997. Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework. In Proc. of the Data Compr. Conf. (DCC), pp. 221–230.
Mallat, S.G. 1998. A theory of multiresolution signal decomposition: The wavelet representation. IEEE Trans. Patt. Anal. Mach. Intell., 11(7):674–693.
Martin, D., Fowlkes, C., Tal, D., and Malik, J. 2001. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proc. of the ICCV, vol. 2, pp. 416–423.
Mumford, D. 1994. Bayesian rationale for the variational formulation. In Geometry-Driven Diffusion in Computer Vision, B. ter Haar Romeny (Ed.), Kluwer Acad. Publ.: Dordrecht, pp. 135–146.
Mumford, D. and Shah, J. 1989. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math.,42:577–685.
Paragios, N. and Deriche, R. 2002. Geodesic active regions and level set methods for supervised texture segmentation. Int. J. of Comp. Vision, 46(3):223–247.
Picard, R., Graczyk, C., Mann, S., Wachman, J., Picard, L., and Campbell, L. 1995. VisTex vision texture database. MIT Media Lab.
Portilla, J. and Simoncelli, E.P. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. of Comp. Vision, 40(1):49–71.
Puzicha, J., Hofmann, T., and Buhmann, J.M. 1999. Histogram clustering for unsupervised segmentation and image retrieval. Pattern Recog. Letters, 20:899–909.
Puzicha, J., Rubner, Y., Tomasi, C., and Buhmann, J.M. 1999. Empirical evaluation of dissimilarity measures for color and texture. In Proc. of the ICCV, vol. 2, pp. 1165–1172.
Randen, T. and Husøy, J.H. 1999. Filtering for texture classification: A comparative study. IEEE Trans. Patt. Anal. Mach. Intell., 21(4):291–310.
Reininger, R.C. and Gibson, J.D. 1983. Distributions of the two-dimensional DCT coefficients for images. IEEE Trans. on Communications, 31(6):835–839.
Rissanen, J. 1978. Modelling by the shortest data description. Automatica, 14:465–471.
Rousson, M., Brox, T., and Deriche, R. 2003. Active unsupervised texture segmentation on a diffusion based feature space. In Proc. of the IEEE Conf. on Comp. Vis. a. Patt. Recog., vol. 2, pp. 699–704.
Rubner, Y., Tomasi, C., and Guibas, L.J. 2000. The earth movers distance as a metric for image retrieval. Int. J. of Comp. Vision, 40(2):99–121.
Shi, J. and Malik, J. 2000. Normalized cuts and image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 22(8):888–905.
Simon, J. 1980. Differentiation with respect to the domain in boundary value problems. Numerical Functional Analysis and Optimization, 2(7):649–687.
Simoncelli, E.P. and Adelson, E.H. 1996. Noise removal via Bayesian wavelet coring. In Third Int’l Conf on Image Proc, Lausanne, IEEE Sig. Proc. Soc, pp. 379–382.
Simoncelli, E.P. and Freeman, W.T. 1995. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In Second Int’l Conf. on Image Proc., Washington, DC.
Sokolowski, J. and Zolesio, J.-P. 1991. Introduction to Shape Optimization. Springer: New York.
Srivastava, A., Liu, X., and Grenander, U. 2002. Universal analytical forms for modeling image probabilities. IEEE Trans. Patt. Anal. Mach. Intell., 24(9):1200–1214.
Tang, M. and Ma, S. 2001. General scheme of region competition based on scale space. IEEE Trans. Patt. Anal. Mach. Intell., 23(12):1366–1378.
Tu, Z. and Zhu, S.C. 2002. Image segmentation by data-driven Markov Chain Monte Carlo. IEEE Trans. Patt. Anal. Mach. Intell., 24(5):657–673.
van Hateren, J.H. and van der Schaaf, A. 1998. Independent component filtering of natural images compared with simple cells in primary visual cortex. In Proc. of the Royal Soc., London, pp. 359–366.
Vese, L.A. and Chan, T.F. 2002. A multiphase level set framework for image segmentation using the mumford and shah model. Int. J. of Comp. Vision, 50(3):271–293.
Wainwright, M.J., Simoncelli, E.P., and Willsky, A.S. 2001. Random cascades on wavelet trees and their use in analyzing and modeling natural images. Applied and Computational Harmonic Analysis, 11(1):89–123.
Wallace, C.S. and Boulton, D.M. 1968. An information measure for classification. Comp. J., 11(2):185–194.
Wu, Y., Chan, K.L., and Huang, Y. 2003. Image texture classification based on finite gaussian mixture models. In 3rd Int. Workshop on Text. Anal. and Synth., ICCV, M. Chantler (Ed.), pp. 107–112.
Wu, Y., Zhu, S.C., and Liu, X. 2000. Equivalence of Julesz ensembles and FRAME models. Int. J. of Comp. Vision, 38(3):247–265.
Zhu, S.C., Liu, X., and Wu, Y.N. 2000. Exploring texture ensembles by efficient Markov Chain Monte Carlo-toward a ‘trichromacy’ theory of texture. IEEE Trans. Patt. Anal. Mach. Intell., 22(6):554–569.
Zhu, S.C. and Mumford, D. 1997. Prior learning and Gibbs reaction–diffusion. IEEE Trans. Patt. Anal. Mach. Intell., 19(11):1236–1250.
Zhu, S.C., Wu, Y., and Mumford, D. 1998. Filters, random fields and maximum entropy (FRAME). Int. J. of Comp. Vision, 27(2):1–20.
Zhu, S.C. and Yuille, A.L. 1996. Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Patt. Anal. Mach. Intell., 18(9):884–900.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Heiler, M., Schnörr, C. Natural Image Statistics for Natural Image Segmentation. Int J Comput Vision 63, 5–19 (2005). https://doi.org/10.1007/s11263-005-4944-7
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/s11263-005-4944-7